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Abstract— Asymptotic analysis is presented for elasticity problems concerning out-of-plane per-
turbations of plane cracks. Some of the subtleties are first illustrated through consideration of two-
dimensional problems; we derive formulae that generalize slightly those already available. Solution
of the more difficult three-dimensional problem is facilitated through novel use of an integral
identity. The asymptotic formulae that are developed for the stress intensity factors are more flexible
than those available previously, in that no special system of coordinates based on the perturbed
crack edge is employed. & 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The present paper deals with two- and three-dimensional problems of linear elasticity in
infinite elastic media containing slightly nonplanar cracks. We consider a smooth per-
turbation of the crack surface and obtain asymptotic formulae for the stress-intensity
factors. For the case of two dimensions our results generalize formulae derived by Cotterell
and Rice (1980). For the case of three dimensions we present asymptotic formulae for the
stress-intensity factors ( for the case of the out-of-plane perturbation of the crack) and give
analysis which may be useful for the explanation of apparent inconsistencies between results
of Gao (1992), Xu et al. (1994) and Ball and Larralde (1995).

Asymptotic analysis of the stress intensity factors for problems relating to deflection of
the crack trajectory can be used for the prediction of crack propagation in an inhomo-
geneous clastic medium ( for a two-dimensional case see the work of Movchan er al., 1991 ;
three-dimensional numerical simulations were performed by Gao and Rice, 1989 ; Bower
and Ortiz, 1990 ; Xu et al., 1994). It turns out that the first-order asymptotic approximation
of the stress intensity factors requires the two term expansion of the stress field near the
unperturbed crack tip as well as two terms of the expansion of the Bueckner weight
functions (see Bueckner, 1987).

As a matter of motivation we analyze several elementary examples.

1.1. A rigid shift of a semi-infinite crack
First, consider the perturbation of stress-intensity factors due to rigid shift of a semi-
infinite crack

So = {x:1x, =0,x, <0}. .n

The resulting crack after the transformation is

* Author to whom correspondence should be addressed.
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Fig. 1. Rigid shift and rotation of a semi-infinite crack.

S, ={x:1x:=ap,x; <&} (1.2)

where 0 < ¢ « | (see Fig. 1(a)).

Consider a stress field in a homogeneous plane. The equilibrium equations can be
written in the form

~ —(nc) {nc)

00} 0o . .

= +——.w+g§m)=0, i=1,2.
0X, dx,

The superscript (nc) is for “no crack™, and it is assumed that the support of gi" does not
intersect the surface where the crack will be located. Introduction of the crack S, generates
additional stresses ¢;; which must cancel the tractions associated with ¢ ; thus,

012(x), £0) = —6¥(x,,0), @1:(x,, +0) = —a%%'(x,,0), whenx, <0. (1.3)

The crack face weight function for the semi-infinite crack (1.1) is given by

hix,) = \/-—_—i;‘, X, <0, (1.4)

The following relations (see Sih and Liebowitz, 1968) hold for the traction vector

ahead of the crack
a,, 1 K, A
< l‘—)’v ~~~~~ ( ll>+\/x‘l( l[), (1.5)
022 V2nx, K, 4

where

K, ° ) U(lnzc) )
(K,) = B h(x,) (o-(z“f))dlh (1.6)

2

A” /3 0 & G(In?_C)
= — h X .
(m) \/nf, RS (G(anc))d*' (.7

Introducing instead the crack S, requires that
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Og'ne) 0-520)
17(‘6 +8(p 5¢+0) = G(nC)(xla0)+8¢'——‘l:_(x150)+8l// (.\'1,0)
dx, 0x,

(nc) A erine)

(xl,O) t//-of" (x,,0), i=12 (1.8)
0X,

(r 80'
= a«‘"(x],0)+£gp~

Using the relations (1.3) and
o (x,,0) = 0,1 (x;, £0)—0,,(x, +0), (1.9)

(see Novozhilov, 1961) together with formulae (1.8) we obtain

n
K~ K§0)+“3 /;((PAI_'//AH),

o ' 0 oo,
Ky~ K’ +e¢ ;((PAII"V/AI)‘”&// h(xl)oTx“'dxl, (1.10)
Z e X

where K{¥, K{{ represent the stress intensity factors for the unperturbed crack. This
representation indicates the importance of high order terms of the asymptotic expansion
of the stress field near the crack tip. Further in the text (Section 2) we discuss the case of a
small perturbation of an arbitrary shape.

1.2. Rotation of a semi-infinite crack
Consider a rotation of the semi-infinite crack S, through a small angle ew in such a
way that the resulting crack is given by

S, = {x:x, = tan(ew)x, ~ ewx,,x, < 0}. (1.1

Also, introduce the system of coordinates Qx| x5 with basis vectors

e} 1 em\ [e,
()= V) 2
e —sw 1 €,
as shown on Fig. 1(b).

For a homogeneous plane (no crack is introduced yet) the stress field admits the
following expansions:

(nc)
dof
oS5 (x,, ewx,) = o (x,, 0)+gw>c, (xl,()) 2ewa’y’ (x,,0)

o.(ncl

o) (x,. 0) — sa)x,( ~(x1.0) = 2001 (x1.0). (1.13)

~ (nt.)

% (x,, cwx,) ~ % (x, 0)+ean1 7 (\.,0)-1—5(0(0‘""()61,0) o™ (x,,0))

ﬁ (ru.) ’)

=o' (x,,0) —ewx, ’” (xl,O)————(swx,T(x])) (1.14)

where we adopt the notation
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T(x,) = o'V (x,,0) — 0699 (x,,0). (1.15)

When we introduce a crack S, the quantity (1.15) can be regarded as a T-stress acting along
the crack face, in view of the relations (1.3), (1.9).

Next, let us introduce an artificial assumption related to the applied stress field : it is
assumed that components ¢\’ have a bounded support. No doubt, this restriction is not
appropriate for a real physical model, but it enables one to use expansions (1.14), (1.15)
on a semi-infinite interval which is good for the purpose of the simple illustration presented
here (a comprehensive asymptotic analysis is presented in Section 2). It is easily verified

that
0 ao,(lnzc') 2— ) [(l 0 bl /i,:z\vu
JG.K(XI,O)wxl :x;d,\l = _v, ) [eA%) ()C,O)(,l)(,,/‘(*1 \/ n Xm
- S K (1.16)
and

0 00.(2n2<:) __2’ o
J/ ax‘l‘(x],O)wxl \/%l—dxl = _EKEO" (1.17)

Consequently, the expansions (1.13), (1.14) together with eqns (1.6) applied to the effective
tractions on S,, yield

3
Ko~ K=o K

w 0

Ky~ K}?’%—g; K}‘”—awj

) .
hix, )("T(x' T(x,))dx,. (1.18)
/A

These formulae agree with the results obtained by Cotterell and Rice (1980) when specialized
to the case T = const that they considered. It should be mentioned that the local system of
coordinates has its centre at the crack tip. It will be shown in Section 2 that an additional
term in the asymptotic expansion of the stress intensity factors is required for the case when
the crack tip i1s moved away from the origin.

It is tempting to assume that the local distribution of the stress near the crack end
determines entirely the first order perturbation of the stress intensity factor for the case
when the crack slightly increases its length. However, this assumption fails. It is shown
explicitly in the next subsection.

1.3. Comparison of perturbation problems for extension of finite and semi-infinite cracks
The first example deals with a semi-infinite crack .S, subjected to loading by a pair of
forces applied on the crack faces; the second concerns a finite crack

Soy={x1x,=0,—/<x, <0}

in a plane where a remote uniform load is applied at infinity. The main objective is to
evaluate the perturbation of the stress-intensity factor due to the relocation of the crack tip
along the x,-axis.

1.3.1. A semi-infinite Mode-I crack. Let d denote the distance between the origin and
the point characterising the location of concentrated forces of intensity P. Also, suppose
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that the stress field satisfies the homogeneous equilibrium equations and vanishes at infinity.
Then, ahead of the crack

Gry = s = e A X (1.19)

where

i )

w12 K |
KO =P [ 4= =
Ny

Now consider a small increment of the crack length, so that the right end of the crack will
be located at x; = ¢ (the left end is supposed to be fixed). In this case the new stress intensity
factor K{? is given by

prap—

{ )
KO =P [y = Kacdie (1.20)

with ¢, = \/7/2. This is consistent with the static limit of the formulae derived by Willis
and Movchan (1995).

1.3.2. A finite Mode-1 crack. Assume that the elastic plane with the crack S,; is
subjected to a uniform remote stress a5, = o, the body force density is supposed to be zero,
and the crack faces are free of tractions. Then the stress intensity factor is given by

r

K(l)) = d /1[/
| \/ 2’

and the asymptotic approximation of the stress g,, ahead of the crack is specified by

o(x, +112 Ky —
0'2: = — “'/ff:t":?:T:: ~ T :l,?,;: + A['[\/ Xl N (1 21 )
NATIC T SRS 4

with

3 K
Av=3 "=

5/ FCY
v 2T

Let the crack length be increased by a small amount ¢ in such a way that the left end of the
crack does not change its position whereas the right end is relocated to the point x, = &.
The new stress-intensity factor is given by

) rf[ » K[O)
K}!l — G\/E’Z“(*j—é) — K}(”—FE“;/\-{—O({-}Z)
= K" +ocad,+0(7), (1.22)

where
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One can observe that the constant coefficients ¢, and ¢, differ by the factor 2/3. This
fact indicates that, in general, it is not enough to know the distribution of stress near the
end of the unperturbed crack. The additional information required is the asymptotics of
the weight functions which depend, of course, on the geometry of the entire region. We
illustrate this statement through the following elementary consideration.

It can be easily verified that if ahead of the crack, located on the x,-axis, the stress field
produces

K(I(J) —
Gy ~ ~rmEE +A1\/«’C| » x>0, (1.23)
V 2rx,

and if the Mode-1 weight function £(x,) has the asymptotic expansion

[ 2 o
h(x)) ~ —_;‘C +q9 —x;, x, <0, (1.24)
X1

then for a small increment ¢ of the crack length (we are looking at the cases where the crack
is semi-infinite or its left end is fixed) the stress intensity factor at the right end is given by

Ky :K§°)+8\/§A1+§\/§Kf0’61~ (1.25)

For the case of a semi-infinite crack

and for a finite crack of the length /

R 2
1= 7\

(it follows, for example, from the explicit solution for a finite crack presented in Sih and
Liebowitz, 1968). Thus, for a semi-infinite crack we obtain the formula (1.20), and for the
case of a finite Mode-I crack one has the result which agrees with (1.22).

In the text below we present a comprehensive asymptotic analysis of the stress-intensity
factors for problems involving small perturbations of the crack front.

2. TWO-DIMENSIONAL SEMI-INFINITE CRACKS
Let

S, = {xeR’:x, = ¢f(x,), x; <0}, 2.0

where ¢ is a small positive non-dimensional parameter, and f{x,) is a smooth bounded
function which tends to zero as x, > — oo (see Fig. 2). Also, let Q, = RAS,.

A crack which occupies S, perturbs a stress field which, in the absence of the crack,
would be 6§}, with corresponding displacement field u™, taken to be a field of plane strain.
The additional displacement induced by the presence of the crack is denoted by u. It satisfies
the equilibrium equation
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Fig. 2. An out-of-plane perturbation of a 2-D semi-infinite crack.
Lu:= yVu+A+)V(V-u) =0 inQ, (2.2)
with the boundary conditions
" i=0,(u;x)n; = —o(X)n; (2.3)
on either side of S,(xe §F), and the condition
u(x) - 0 as [|x]| - co. 2.9)

When & = 0, the corresponding solution u, defined over the domain ,:= RA\S, can be
found by elementary means. In particular, the traction components ¢{%, ¢4 just ahead of

the crack tip, at x =(r,0), are given as

(aﬁ“f) 1 (Kﬁ“)+ N (Af?’)
o s R
oy V2nr \K{” A®

where [compare with (1.5)]
K(D) 0 o_(nc)
D= e ),
K{‘O) Cw a.gnzc)
A0 2 0 P O.(nzc)
! =\/~v W) e dx,.
AP N ety

We consider separately two cases: (i) when the unperturbed crack is subjected to
Mode-I loading (¢{¥’(x,,0) = 0); (ii) when the unperturbed crack is subjected to Mode-I1
loading (a%¥(x,,0) = 0).

2.1. Perturbation of the Mode-I crack
In the vicinity of the crack tip, the displacement field u admits the following asymptotic
representation, relative to local polar coordinates (r,, 8,) as illustrated in Fig. 2:
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u-~ _Z“ (FI2K ()®V(0,) + 722/ 214 ()EV(0,)} +c(e) + T(@)r.x(0) asr,—0. (2.5

j=1.

The coefficients K; are the stress intensity factors, and A, provide the coefficients of the
“next terms” in the traction components ahead of the crdck ¢(¢) 1s a constant vector and
T(¢) is the T-stress. The angular functions @, EV, y are given by (see Williams, 1957)

e 1y cos —cos
oV (0) ((I)’gn(())) 1 (2x~1)cos 5 —cos o
= (1) . Iy 36| .
O, (0))  du/2n —(2k+1) sing +sin =
2 2
2k—1)s1 4 3si 3
I N T B R
e A e 0 . 30 @7
Y (0)/  4uy2n ~(2K+1)cos§+30057
0 56
=0(0) | (2K—3)COS§ +cos7
EVO) = (—(1) ): *7: 0 56 |7 (2%)
' (0) 12p/2m (2r+3) sin; —sin 5
0 . 56
=00(p) | (2x—3)sin +5sin—-
=Z57(8) 12p,/2n _(2K+3)cog§+5c0S?
Xr 1 /2cos(20)+x—1 ,
2(0) =< > , ( . (2.10)
o 8;1 —2sin(26)

where k = (1+3u)/(A+ u) = 3—4v; v is the Poisson ratio.
The stress intensity factors are assumed to depend smoothly on the small parameter ¢.

Thus,
<K|(8)> N (K[(O))+8< i )+O(52).
K (e) 0 1(0)

Here, K;;(0) = 0 because the unperturbed crack S; is subject to Mode-1 loading. We employ
the notations

K = K,0), j=LII

Further analysis will provide the derivatives K;(0), and hence the first order corrections to
the stress intensity factors.

A formal solution of the problem (2.2)~(2.4) may be developed as an asymptotic power
series
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u(x, &) ~ oY x)+enV(x)+- - .11

with respect to ¢. The principal part u”’ satisfies the boundary value problem for the limit
region Qg

Lu”(x) = 0, xeQ,, (2.12)
o0, x,, +0) = — 6% (x,,0), —o0 <x; <0, (2.13)
u?(x) -0, as|x|| - . (2.14)

Formally, for the second term of the asymptotic series (2.11) one can write

Lu”(x) =0, xeQ,, (2.15)
oy, x, £0) = %{f(x,)a.‘,(u“” ;x, £0)), —oo<x <0, (2.16)

X

u” >0 as|x| — oc. Q.17

Also, it is assumed that u'" vanishes at infinity.

Strictly, the series (2.11) is an outer expansion, not valid in a boundary layer distant
O(g) from S,. The boundary conditions (2.16) define its second term, because the tractions
specified there are bounded, and equilibrium can be imposed uniformly across the boundary
layer.

Using (2.13) and (2.16) we can state more precisely that

2
o x;, £0) =0, a:l(u(”;xl,to)=5%{f(x,)al,(u<°>;x,,J_r())}_ (2.18)
X

Let (r, 8) denote polar coordinates related to the tip of the reference crack S,. Then,
the field u” admits the asymptotic approximation

u® ~ ¢(0) +r' 2 {KIODV(B) + KLDW ()} asr 0. (2.19)
(In our particular case K{{’ = 0.) Direct calculation gives
, 2\
7O+ KOO0+ KOO = F( ) KR 20

Then, it follows from (2.18), (2.20) that
o2 (V5 x,, £0) = O(1).

It should be emphasized that in the general case involving Mode-I1 loading, singular
terms occur in the formally derived traction boundary conditions for u'”. As we show below
these terms indicate the presence of the boundary layer which occurs near the crack tip due
to relocation of the crack front. For the case of Mode-1 loading we are just lucky to have
bounded tractions in the problem for u".

Let us introduce local coordinates y = (y,,y,) corresponding to the perturbed crack
S.:
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_ 1 cw 0 220)
v= (—sw 1)"“(&&)’ @

where i = f(0) and to first order approximation v = f(0). The system of coordinates Y*
has its origin at the end of the crack S,, and the orientation of the axes corresponds to the
orientation of the crack contour at x;, = 0.

The following expansion holds

. 0 1 —ww
— 0 + - u
u=n 858 {(ew | ) (y)} e 0

0 —«
=u” +ee’'(0)+¢ {( “> u(y) + g(“()’)) \ }+0(82)- (2.22)
w 0 de =0

It can be verified by direct calculation that the representation (2.22) is equivalent to

+0()

. 6
u=u® +ec’(0)+¢ {K}(O)rl"z(b(”(f?) +K_,-(0) (:——1/1 F;k(r"z(b“’(f)))
j=LI V2
0

+w<yz T 517)(’”(1)"”(9)) +or'? (-5 (0), Q‘.-”(G))’]

— 0 o
— ¥/ 2mA,;(0) 0_)/—(r3/25(/) (6))}4— smaller terms. (2.23)
J2

We shali also need the following vector functions which satisfy a homogeneous Lamé
system and homogeneous traction boundary conditions on the faces of the crack S,.

() = r "), j=LI (2.24)
where

36 0
i _ (‘Pﬁ”) ) | 2+ l)cos7 —3cos—

2
[ B - 30 0
¥ (T+ 1)/ 8 —(2K—1)sin*;f+3sin§
.36 0
W l —(2k+1) s +s1n§—
\P(ll) = ( Y > = — —————
an N 30 0
¥ (1+K)y/8n —(Zx—l)cos»7+cos§
The following relations are useful
e in F+x
('@ (8)) = —— W (x), 2.25
5.0 OV E) = L) (2.25)
(’} a 1/2 i 1/2 1 ] i2
Y23y gy JO PRV @ B, ~ 0 )ey) = — 52 @@), (2.26)
1 2

and
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SR = - ) (2.27)

It follows from (2.23) and (2.25)~(2.27) that (here the assumption K;,(0) = 44(0) =0
is used)

' = c'(0) —w%KI(O)c(“>(x) +r2 {K; O)DN () + ( \ﬁ v A4,(0)— %wK.(O)

+ Ky (0)) oo (9)} +smaller terms.  (2.28)

We emphasize that the coefficients K;(0) and 4(0), corresponding to the unperturbed crack,
are given.

Clearly, the second term in (2.28) is characterized by a high singularity (the cor-
responding energy integral is infinite). Formally, this singular term occurs due to relocation
of the coordinate system from the actual crack tip to the end of the reference crack S,,.
Physically, it indicates existence of a boundary layer in a neighbourhood of the perturbed
crack front; the expansion (2.28) must be treated as an outer expansion which is valid in
the exterior of a neighbourhood of the crack.

In this particular paper we have no intention to analyze the boundary layer. We have
to obtain just the quantity Kj(0) characterising the perturbation of the stress intensity
factor.

Let us consider an auxiliary field

. 1
v = g4 ;;’f YK, (0)C". (2.29)

The vector function vV satisfies the homogeneous Lamé system (2.15) and the boundary
conditions (2.16). It also vanishes at infinity and does not have a singularity at the tip of
the reference crack S, ; as r — 0 the vector function v’ admits the asymptotic approximation

v~ 12 {K{(O)(D“’(f))+ (\/gwA,(O)— %le(O)+K{,(0)>¢D“”(0)}. (2.30)

Using standard technique we obtain (the details of the calculations are presented in Appen-
dix A)

K} (0) — in.(0)+\/Z~[.//A1(0)—D =0, (2.31)

where

5

9
D= —J h(x)) = {ﬂxl)au(uw’;xl,+0)}dx1,
. 0x,

with A being the weight function (1.4).
Consequently, the stress intensity factor K, is approximated by
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1
Ku(e) = eKj(0)+o(e) = ¢ (E wkK (0)— \/g WA (0)+ D>+ 0(€). (2.32)

One can also show that K7(0) = 0. Hence,
K, (e) = Ki(0)+o(¢). (2.33)

In the next subsection we consider the shear mode crack and asymptotic formulae for
the stress-intensity factors.

2.2. The Mode-II crack
Now suppose that the displacement vector u(x) satisfies the homogeneous system (2.2)
and the condition (2.4) at infinity, but

¥ #£0, o =0. (2.34)

Again, we use the asymptotic formula (2.11). In our particular case the coefficient u'"
satisfies the system (2.15), it vanishes at infinity, and the formal boundary conditions (2.18)
are replaced by

¢

0,0 5x, £0) = — Ay
A

{077 (x1,0) flx1)S,

0
0'21(“(”4951» 10) = 'ﬁ";" {f(xl)o-ll(“(()) s X1, +O)}‘- (2.35)

gl

The asymptotic formula (2.5) remains valid near the actual crack tip. In the present
case,

K,(0) = 4,(0) = 0,

and it follows from (2.23) (which is written for the general case) that

1 ,
ul = — YKy (0) {— %fr RO (0) 4 "2r<“(0)}+K;I(O)r”m“"w)

+ (—\/7—2I WAL (0)+ ;wK"(O)+K;(0)>r”(b”’(B)

— (/21 4,1 (0) + 0K, (0)r 2 X (6),  (2.36)

where the vector functions YV, j = I, II are given by

- COS =
y 1 2
) _ -
' (T“))—u /271 61’
’ vV —sin-
2
30
(11} Tiu) I COS?
Yo _ - . (2.37)
Y U/ 2m . 30
—sin —
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The fields r~'2Y, 2™ satisfy the homogeneous Lamé system, but the shear components
of tractions do not vanish. Formally we can write
02 (r YN e = a0 (PP Y M) gy = 0,

153 ] I 9 1 -
o PYMY L, = £ —==r e o (r YY) = & "'?—‘rﬁlw- (2.38)

v 2n \4n

As before, the field u'” has a strong singularity which indicates the presence of a
boundary layer in a neighbourhood of the actual perturbed crack. So, practically, one has
to regard (2.36) as the term in an outer expansion corresponding to the first correction
term in the representation of the displacement field.

We shall try to use a trick which is similar to one employed in Section 2.1. Namely,
we introduce an auxiliary vector function

U = ¢K,(0) {14—;& r OO - "ZY‘”(H)}~ (v/ 270 41(0) + 0Ky (0))r' > Y (),

and then consider
v = -1, (2.39)
This vector function satisfies the homogeneous Lamé system
Ly'" =0, in R%S,, (2.40)

and the following traction boundary conditions

A

0320113, £0) = — = {fx,)ofS (x,, 0)}, (2.41)
X
% Ky, (0
gV xy, £0) = “;' x)e @ x,. £0)} i‘//&n{;g)?n
71X \ /2

+(/2mY 4, (0) + WK, (0)) 1 (2.42)

Note that, as we approach the crack tip, the first term on the right-hand side (2.42) is
singular, and the second and third terms compensate this singularity, so that, as a result,
the right-hand side of (2.42) is bounded in a neighbourhood of the ¢rack end. In contrast
with the case related to the Mode-I crack, the vector function vt does not decay at infinity :
it is characterised by the following asymptotic formula

v~ (27 A4 (0) + 0K, (0)F' XYM (G)  as - oo (2.43)

It follows from (2.39) that in the vicinity of the crack end

1 ,
v\~ KOy 2@ (0) + <§ wK“(O)—\/E«,hA“(O)+K}(0))r1"2®‘”(6). asr —0.

Now, in order to evaluate Kj(0) and Kj,(0) we apply the Betti formula in the region BR\S,
to the vector functions vV, { and v'", {", where By is the ball {x: x| < R}. The detailed
calculations are presented in Appendix A. Taking the limit R — o0 we obtain
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Ki(0) =~ E(UKH(O) - \[gwAu(O) (2.44)

and
K, (0) =0. (2.45)

Consequently, for the case when the unperturbed crack corresponds to the Mode-II state,

Ki(e) = —¢ <% WK + \/%%A,,(O))—FO(S), (2.46)

and
Ku(e) = K + o(e). (2.47)

Clearly, for general loading a combination of formulae (2.32), (2.33) and (2.46), (2.47)
can be used. (We deliberately assume that the load is applied outside of the perturbation
area, otherwise one would need to deal with series expansions of applied tractions with
respect ¢; it does not produce any difficulties, but just yields some additional terms in the
traction boundary conditions involved in the problem for u'”.)

2.3. Comparison with formulae of Cotterell and Rice

The problem described in subsections 2.1 and 2.2 is not new, We refer to the classical
paper of Cotterell and Rice (1980) where the perturbation of the stress intensity factors
was analyzed for the case of a small deviation of the crack trajectory. These authors
introduced some additional restrictions : namely the T-stress was supposed to be constant
and also the local system of coordinates was relocated to the tip of the actual perturbed
crack (to avoid apparent singularities in the asymptotics of the displacement field which
occur due to a singular perturbation of the boundary). Cotterell and Rice (1980) derived
the following approximation

K ~ If{o’—sngﬁ?), (2.48)

] 20 £
KI,:IG?’+£(%)K§°’—J‘,"1’ f— J f(—;«a"_‘)_m). (2.49)
n 700\/_‘xl

(For the sake of convenience we have adopted the notations used in the first two parts of
the section.) One should emphasize that the coefficients If}"’, j=L1II1in (2.48), (2.49) differ
from K in (2.32), (2.46), because of the relocation of the local system of coordinates to
the end of the perturbed crack.

In the general case when both the longitudinal and transverse perturbations occur, so
that

S. = {x:x; = ¢f(x)). x; < e},

the asymptotic formulae for the stress-intensity factors, that follow from Section 1.1, 2.1,
2.2, have the form
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Ko~ K¢ {—i-wK:.“’ - ﬁ(wn(m—mmon}, (2.50)

_
[§2) T
Ky~ K +e {5 K — \/ S WA =04 (0)

_\/?JO 7/‘1“765 {f(x,)o,l(u(o’;x,,+0)}dx,}. (2.51)

— A/ - X, 1

As in the previous sections, we use the notations ¥ = f(0), w = f(0), and u"” denotes the
displacement field associated with the unperturbed crack. These formulae agree with (2.48)
and (2.49) in the special case that ¢ = = 0 and o,,(0'”; x|, +0) is constant.

3. THREE-DIMENSIONAL SEMI-INFINITE CRACK. OUT-OF-PLANE DEFLECTION

3.1. Formulation
Here we consider a three-dimensional perturbation of a plane crack. The surface of
the perturbed crack is .S,, where

S, = {x:1x; = e¥(xy. %), x, <0} G.D

The function ¥ (x,, x,) is assumed to be smooth and bounded (see Fig. 3). The unper-
turbed plane crack has surface S;, to which S, reduces when ¢ = 0. In-plane perturbation
of the crack front was analyzed by Gao and Rice (1989). Also, the solutions of Willis and
Movchan (1995) and Movchan and Willis (1995) for the dynamic in-plane perturbation of
a propagating crack reproduce the results of Gao and Rice in the static limit.

The medium is linearly elastic and isotropic, and it is assumed that the crack perturbs
displacement and stress fields u™ and ¢™. These are as introduced in Section 1.1 except
that now they depend upon x; and x,, and an unperturbed Mode-11I component is also
admitted. It is assumed, however, that the body force associated with the field u™ has a
compact support which does not intersect the crack surface S,. The additional displacement
introduced by the presence of the crack is denoted by u(x ; ¢). It satisfies the homogeneous
Lamé system

Fig. 3. A slightly nonplanar 3-D crack.
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Lu(x;e) =0 in R}\S, 3.2)
and the traction boundary conditions on the crack surface
[n-o(u;x)+n 6" (x)]; = 0. (3.3)

This displacement u(x ; ¢) tends to zero as ||x| — oo and 1s discontinuous across S,.
In the particular case & = 0, the displacement u(x;0) is written as u”(x), and the
corresponding stress is '”(x). It is convenient then to employ the notation

Au=u(x;e)—u”(x), Ac =o(u;x)—c¢'"(x). (3.4)

The objective is to find expressions for the corresponding stress intensity factors K(x,:¢)
(j = LI 1II) or, equivalently, for the perturbations

AK, = K,— K", (3.5)
where K" = K,(x, ;0).

3.2. The fundamental identity

While it might be possible to develop an asymptotic algorithm along the lines presented
in Section 2, it is evident that the third dimension would introduce major complications. It
is, in fact, possible to proceed much more directly, by making a modest adaptation of a
method introduced for in-plane perturbations by Willis and Movchan (1995) and Movchan
and Willis (1995). This is outlined now.

Take & > 0. Then, for all ¢ smaller than some g, the crack surface S, is contained
entirely within the region {x: —d < x; < d}. Now let w'(x), 6'(x) be displacement and stress
fields that satisfy the homogeneous Lamé system for all x; < 0 and all x; > 0, and suppose
that u’(x) decays to zero at some suitable rate (specified precisely later) as ||x|| - 0. Observe
too that the displacement and stress pair

u'(x) =u(—x), 6(x)=—a(—x)

also satisfy the conditions specified for u’, o’
Now apply Betti’s reciprocal theorem to large hemispheres

B, ={x:+x;> +d, |x| <R},

for the fields u(x;¢) and u”(x—x") where x’ has components (x|, x5,0). With suitable
assumptions of decay at infinity, taking the limit as R — oo yields

* X 3
j dx, J dx; Z (i(xy — x|, X — x5, £d)os (0 e) |, —4u
oy -y i=1 ’

i=

_G;fl(-\‘l "xllw'\‘l_-x/Z’ id)ui(-xhx?.'- id~6)) = 0 (36)

Taking the difference between those two identities now yields
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0 o 3
f dx, j. dx, [Z (x) —x7,x; — x5, x3)03(0; €)
: , (=1

-0

Xy =d
—oh (X, —x7, X2 = X5, x)u(x, xp, £d; e))} =0. (3.7)

Xy = —d
For an arbitrary function f{x,, x,, x;) we introduce the notations
[f]d(x] s x?_) :.f(xl 5 X7, d) "f‘(xl s X2, —d)’
1
{Daxiixy) = 3 {flxi, x0, d) +f(x1, %2, —d)}.

Then for a product of two functions f(x,, x,, X3)g(x,, X,, X;) one has

[19)a(x1.x2) = [f1a(xr, x2)<g0 (x5 x2) + D alx 1, x2) [glulxy, x2),

and, therefore, (3.7) can be written in the form

o0 +ac 3
J‘ dx, j dx, Z {[“?]d(xl —x7, X, = x5)05(0) (%, x3)

+ (U () — X1, x5 = x5) [0 (WX, x2) — [0 ]a00) — x5, X2 —x5) U alxy . X2)
— a0 = X1, X0 — X)) [ua(xy, x2)) = 0. (3.8)
It is assumed here that ¢ « d, and then the identity (3.8) holds for the stresses and dis-

placements a, u which solve the given crack problem. Furthermore, (3.8) can be expanded
in & power series in ¢ as ¢ — 0, keeping d fixed. This yields, to first order in &,

J“’“’ dx, f“" dx, i {[a(x) —x7. X, —x5){05" (X1, x,)
e —w i=1
+ U X = x5 = X305 ] alxy, x,) — [o73)a(xy — X7, X2 = x5) Ul D (X1, x2)

=<6 a0 — X1, X, ‘x/2)[ugl)]d(xlex2)}' =0. (39
Here u'V is the coefficient of ¢ in the outer expansion

u(x, &) ~ u”(x) +eu'V (x),

of the solution u(x, ¢) ; the notation ¢!/’ := o,,(u'"’) is adopted.
Equivalently, in terms of w’, o*

— e <aD 0 x [0 V], + U]+ (o> — <u D x [67], = 0. (3.10)

Here 6" and e’ denote the column vectors with components ¢'3’, ¢/;. The superscript ¢
means transpose and * denotes convolution with respect to x, and x,. As d » +0, we use
the following notations

/1= Jim [/l <P = fim (Do

T det0

Now, by writing three linearly independent solutions side by side, w’, ¢’ can be replaced by
matrices U, . The columns of the matrix U satisfy equilibrium equations with zero body
force. The matrix function U is selected (see the static limit in Willis and Movchan, 1995
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and Movchan and Willis, 1995) to be homogeneous of degree —3/2, with a discontinuity
across the half-plane

v, =00<x, < 4+00,—00 <X> < +0},

so that

2
[Ul{x,, x2) ~ (7”

1/2
) H(x,)8(x,)I, asx, — +0. (3.11)
X1
The components of the traction matrix ¥ are continuous, and equal to zero on the half-
plane across which U jumps:

2(x,,x,,0) =0 forallx, >0.
Then, as d — +0, the identity (3.10) implies
—[UI' * (e >+ U * [a "]+ [uP]  (T) = 0. (3.12)
In particular, when x| > 0
—[U)' % (a5 +(UY *[¢'V] = 0, (3.13)

since ([u'"]" * (E>)(x}, x5) = 0 for positive x/.

The identity (3.13) applies, in particular, when x| — +0. Then, it requires knowledge
of the traction vector ¢'" on S, and of its asymptotic form on the plane x; = 0, as x, —
+0. The explicit calculations to follow will show how this delivers expressions for the
perturbation AK; to the stress intensity factors.

The explicit formula for [U] is recorded in Appendix B. The matrix-function {U) that
appears in (3.12) was not discussed by Willis and Movchan but, as shown in Appendix B,
it is related in a simple way to [U]. Both [U} and (U} are closely related to the classical
weight functions of Bueckner (1987). Similarities and differences, including misprints in
Bueckner’s formulae, are discussed in Appendix B.

3.3. Projection of the stress field on the reference plane

Now, we perform the calculations necessary to evaluate &
x; = 0 on S, and just ahead of the crack.

Formally, outside a neighbourhood of the crack front one can derive the following
formulae for the traction components on the half plane x, < 0

M on the reference plane

(015 =050 (x,, x5, +0)) = i (,Tc;—

j=10X;

Wxy, x)o(u” (x,. x2, £0))),  (3.14)

where the stress components o}’ evaluated on u” are supposed to be given.' It follows,
since the faces of the unperturbed crack are the traction free, that

(O'(,l))j,} = 0.

Note that the principal part (with respect to #) of (3.14) has a different sign on the upper
and lower crack faces.

The local asymptotic representation of the stress components near the crack front is
given by the well-known formulae (see, for example, Sih and Liebowitz, 1968)

'"In particular, if the unperturbed stress state is two-dimensional, on the crack surface on has ¢{% =0,

0 0 0}) C.
% = v(ol% +at) and ¢t = ot + o'
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! K {3 Q ﬁ K 7‘Q+sin—5—9
6“~4\/Fn; 1 Cosz-i-cos2 11 sm2 > )

2v X K K .8
0'22~:/'/_—2§ ICObE— “SIHE s
: K (5 4 20 K ing sinég
633 "’4 2nr I 0052 —COS 2 n S 2 2 .
K 0
Gyz ~ COS -
23 N2z <
1 .8 56 0 56
O3 ~———=<—K;{sins —sin— |+ K { 3cos; +cos-= |7,
4./ 2nr 2 2 2 2
K 0
61, ~ — ——=sin. (3.15)
V2nr o~

Clearly, for the case of a perturbed crack front one can use the formulae (3.15) in the local
coordinate system; however the orientation of the system may change according to the
change of the crack front, and the origin may be shifted as well.

As mentioned, in this paper we analyze the out-of-plane deflection of the crack front,
with the in-plane perturbation analysis being regarded as known (see, for example, Gao and
Rice, 1989 ; Willis and Movchan, 1995 ; Movchan and Willis, 1995). Thus, the perturbation
includes two main parts:

e Superposition of rotations with respect to the x,-axis and x,-axis. To leading order

approximation, the new local coordinates (x7, x5, x%) and the original coordinates are
related by

where 0 < ¢ « 1, and &y, gw are small angles of rotation about the x; and x, axes.
o Out-of-plane shift (with the same orientation of the axes) : the new local coordinates are
specified by

’

X) =X, X=X, Xj=X;—¢&.

Here y denotes the deflection of the crack front along the x;-axis.

Considering first a local rotation, one can write the following relations for the stress
components:

033 = 033+ 28w’ + 287055,
013 = ayy tew(ol, —o5;) +eyos
Ga3 = 053+ £7(05, —0%3) + 8007 ;. (3.16)

The orientation of the axes of the coordinate system (x7, x5, x%) corresponds to the orien-
tation of the actual perturbed crack front, and, therefore one can use the asymptotic
formulae (3.15) for components o7, Then, we evaluate the stress on the reference plane
x;=0for x;, > 0 (one has to set ) = —ew):
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1 &w
)3 = ——= {_ ’2“K1+Ku}+ O(¢%),
NZZAS

K
0yy > ——— + O(E),

\/27rx,

1 £w
O3 > ——— K — — K 3+ O0(e%),
33 \/ﬁ—zmﬁ { i 7 11}

1 3ew ,
0 X —F———= {K] + —2“1(1[}‘{'0(8-),
W 2TX,

2v ew ,
Gy == {KH‘ —KII}‘*”O(E‘)e

V2nx, 2
K
G — 2 B L 0@). 3.17)
2 \//27TX1

It follows from (3.16), (3.17) that ahead of the reference crack (x; > 0, x; = 0) the traction
VeCtor ¢ = (63, 013, 033)' admits the asymptotic representation

1

0 = —=—== {1+eQ(w,7)}K, (3.18)
V 21X,
where 1 is the identity matrix, and
[0 0 —wf2 Ky
Q= 0 0 —y(1-=-2v)|, K=[Ky|
\3(1)/’2 2'}' O \ Kl /

Second, we describe the stress field on the reference plane x, = 0 ahead of the crack
front {x, > 0) for the case of a perturbation produced by a shift along the x;-axis.

It is assumed that x, is greater than the distance from the crack front to the reference
plane (or, equivalently, we are describing the outer field corresponding to the exterior of a
neighbourhood of the crack front).

Ahead of the crack, the traction vector has the form

K Ay
g ~ A/‘,':_’ +P+x="2A, A = Alll . (3.19)
NL 2 y
L Ay

Upon shift of the crack edge to {x:x; = a0, x,)}, the stress field in the vicinity of the
crack edge changes, from o}(x,,x,, X3) say, to 6,(x,, xa, X3 —&y), plus a further term of
order ¢ which is associated with increments AK, AP and AA in the quantities K, P and A.
The traction component ¢,; on the plane x; = 0 can therefore be represented, asymptotically.
ase—0,

O ~ 05X, x —en//)+HA~I£.~eL+AP +x17AA -
i3 ™~ OptAy, X, — i TT AL ¢, (320)
V 2nx,

where e, is the unit vector whose j-component is equal to é,. It follows, upon expanding
a’y to first order in &, that
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Oty AK-e )
G5 (xy, %5, 0) ~ gl (x,, X3, )—u// P (Y,, Xa, )+ +AP+x\{?AA ¢
N 2nx,

q () K
~ l/,[_-—(\] 2, 0)+ XX, 0)}— ------ =+P+xi"Are.  (3.21)
0x; N, 271,\]

Subsequent caiculations require only the terms that are singular as x; — 0. Thus, changes
in P; and A; can be neglected, and the only important contribution from do®/dx, is that
associated with the “K-field” (3.15). However, allowance has to be made both for the
“K-field” ¢{* and the “A-field” ¢{}*" in considering da}y /dx, and d6h/dx,. 1t is verified
directly thdt the following asymptotic relations hold

(0.K) ¢ o 0.K) i
X fay ™ | fay, ] [ K,
1%
—— 0.(2()],1\) ~ :)A (2(»_/() e 0
X, <X TE(ZY <
. ; X
\0'(3(,[1") / O,(U Ky | Y ) \K” /
4 N
| g0k S— i ,
Oxy | 20\ g
\O,mk)/ A \ Klll
/ ot i2
’6[101 A) \\ ('7(|UI AY 1 X} AI \
C )
/ 0. .
— 0.(201,4) ~ U(21 1§ 0(20 4)
6 1 0 0.4 2.’(7] 1/
Lot oty XA

Note that ¢4} vanishes for the 2-D loading ; in general, it is not zero.” The result is that

* e K
lmi’- }K+P+ 1TA— i‘/’ﬁ
2 2xllu

G, (3.22)

X

where * = 1)(0, x,), 1 is the identity matrix, A and P are known vectors, and

00 1! i Ay \
=0 0 0|, G=—| @'k | (3.23)
10 0/ Ay 4+ (2/r) P K

In Appendix C we analyze the second order expansion [formula (C.1)] of the displacement
field near the edge of the unperturbed crack and evaluate components of the vectors A and
G via the coeflicients of this expansion.

3.4. Evaluation of the stress intensity factors
The effective traction vector ' with components a'3’ can be split into two parts,

0-(1) — d’“'-’—d(l)

The term o¢!" has support in the half-plane x, <0 and is given by (3.14), and
6V = 6" —g""'. One can evaluate the convolutions in (3.13) when x/ > 0. Stress com-
ponents are continuous ahead of the crack, even for the perturbed problem, and

*1t follows directly from expansion (C.1) that ¢{%” = x| 2K {1 (0) =2 Y(0)) = /(2% /7)(1 - 21 K],
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[£]li =0 asd—-0.

Thus, the identity (3.13) implies’

j l dx, J dx, [U](x} —x,,x’z~x2)<o"”)(x1,x2)

-

“JO dx, r dxy QUMY (i —xp, x5 = x)[a V] (x,. x2) = 0. (3.24)

o

This is true for all x; > 0 and can be evaluated, in particular, in the limit x; — +0. The
notation I, j = 1,2, will be used for the integral terms in the left-hand side, so that (3.24)
can be represented as

I] —12 = 0, (3.25)
where
L= 1041,

and

L

I = J } dxlj ‘ dx, [UI(x —xp, x5 —~x2)<6' ) Y (xy, x2),
a —

(4] ke
I = f d«\'lf dox, [U(x) = xp, x5 —x2){6 7 > (X1, X2).

— L —

The limiting value as x; — +0 of the integral I{*’ only requires the asymptotic rep-
resentation of the stress field ahead of the crack. The term I{~' depends on the morphology
of the crack surface and on tractions applied on the crack faces.

Formally, it follows from (3.14) that the leading order (with respect to r) part in the
outer expansion of the stress ¢'" near the crack edge corresponds to a non-symmetric load.
It is taken into account by evaluating the second integral term in (3.25)

I, = UM «[e]. (3.26)

It should be mentioned that in the case when the unperturbed state corresponds to the
Mode-1 crack, the term I, vanishes.

A convenient method for evaluating I is to employ Fourier transforms: the con-
volution becomes a product of the transform images and the asymptotic approximation as
x7 — 0 follows from the behaviour of the transform as &, — oo (&,, &, denote the transform
variables corresponding to x;, x,).*

Fourier transformation of the sum of (3.18) and (3.22) gives, for the general out-of-
plane perturbation,

—

SN2 l o - S i'%e/
e6')) ~ (l) e (AK’iEC:l//*@K)+SQK+ *L—éy'-ﬂm
2] (& +0i)b 2(8, +01) -

¥*G.  (3.27)

The convention is adopted here that an overline implies the Fourier transform with respect
to whatever arguments the original function contains. Thus, &}’ is a transform with respect
* Equation (B.4) shows that [U] is symmetric; hence, transposition of this term is redundant.

4 Here we use the notations similar to Willis and Movchan (1995). In particular, for a function f{x) its Fourier
transform is specified by f(¢) = [, flx) e dx.
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to x;, x, and is a function of &, &,, whereas the terms on the right, such as AK, are
transforms with respect to x, only and are functions of &. The Fourier transform of
the weight function is characterised by the following asymptotic formula (see Willis and
Movchan, 1995; Movchan and Willis, 1995)

[U] ~ i)'

1 —
| | - X 3.28
(& +00)'" { * 51+01Q} (:28)

where

2—31:'_|V i&,v 0
“3aoy & P
~ ié,v 2+v
Q= 2—v _2(2—v)|‘:zt 0
1
0 0 —51¢]

It follows from (3.27), (3.28) that as |£,| — + oo, to order O(1/|¢,})

e}

> {Kﬁ+gﬁ+eéw*ex+e G) {//‘*E} (3.29)

i +0i

em’gf’ ~ ey *@K+ !

Hence, by inverting (3.29),

eIt = g[U) xa'! ~ ey *@KS(x,)

+ {AK—&-&Q +(W*OK) +¢ (g) w*G+gQK} H(x), (3.30)

where the convolution is considered with respect to x, and x,. Here,

0
22-) 1 01 0
Q=- 24 — 41 0 0]¥x), (3.31)
T O X5 —V
2(2—-v) - 0 0 0
0 0 12

and the matrix © has the same form as in (3.18) with w = |, and y =  , (the representation
for the matrix Q agrees with the analysis given by Gao, 1992). Since x| — +0, the delta-
function in (3.30) makes no contribution. Hence,

1/2
lim el = AK +2Q «(y*@K) +: (g) V*G + QK.

Next, we express the “morphology’ term I~ in the form
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AK%rlnorphology) ()C/q)
= Jim el = ARG () (3.32)
0

with

— —

0 o 2
AK}murphOlogy)(xlz) — _gJ\ dx, J dx, {z hfcj)(xlaX2—Xlz)
k=1
2 A
<Y §;<w(.x.,x2)<aik(u<°>)>(x.,xz))}, j=1LIL - (3.33)
i=1CX;

Here
hlgl)(xhxz) = [Un](~x,, —xz),h;(m)(xl,xz) = [Up](—x,, —x3).

The explicit form of [U] is given by (B.5). It may be noted, from (3.15), that the averages
¢+» of the singular part of the stress components ¢,(u’) are zero.
Finally, we analyze the integral I, from (3.25). As x| — +0 it admits the representation

I, ~ — U x[e"V]. (3.34)

The convolution has a singularity consistent with an “inner limit” (d — 0) of taking an
“outer expansion”, and it is to be interpreted in the sense of generalized functions. The
details of the calculations are given in Appendix B. It follows immediately from the form
(B.7) for <U) and the relation (¢)),; = 0, that the first two components of the vector
term (U’ x [6"] are identically zero. We adopt the following notation

F0
0
AK%skew) |

= leijllo U = [a'"]. (3.35)

Hence, (3.25), (3.30), (3.32) and (3.34) imply

AKHnorphology) \
12
AK ~ —¢ {Q «(Y*OK®) — (g) Y*G+Q(w, }')K‘(”}+ AKgorrolom | (3 36)
AK%SkeW)

3.5. Comparison with the two-dimensional case

The results given above for a three-dimensional perturbation of the crack front are
consistent with those presented in Section 2. Namely, if in the formula [obtained by Fourier
transforming (3.36)]

; AK{l;norf)Eo ORY) |

AK}ﬂorphtﬁcgyi

AKT
}

AK ~ —¢{Q*OK™) + OKT} +

we let £, = 0 and y = ¢0y/8x, = 0, inversion of the terms Q and ZlT> reduce to zero and
the remaining Fourier transform with respect to ¢, yields
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— K(O) 1/2 AK(morphology)
AKU - —¢ ( 0 w/2 11 )_(_75) l/]*G-l-( 11 )} (337)
AK, 32 0 k) \2 0

This agrees with the formulae (2.32), (2.46), with

20 1 o
AK{porrheloey) — \/;J3L = . 5(’]' Wx)e @ 5x,,0)} dx,,

and

3.6. Example: sinusoidal perturbation of the crack surface

Here we consider the simple example of a sinusoidal perturbation of the crack surface.
This example was treated by several authors (see Gao, 1992; Xu et al., 1994; Ball and
Larralde, 1995), and, apparently, the results of calculations presented in these papers show
some disagreement.

Namely, we assume that’

¥ = Y(xz) = o cos(kx,), (3.38)
and, consequently
w=10, =y (x;) = —ofksin(kx,). (3.39)

Also, it is assumed that the stress-intensity factors, corresponding to the unperturbed state,
are x,-independent. In this case

2—3v )
| o |20 -
* - T oyixa) Y iy (0)
Q +(y*OK) nP.V.j_l Fo 0 A — 5=y (0) | K
l v 0 V}
Z—Kﬁ)j
2—3v
IRy < (V]
z(z—v)K‘ ;0
= — kcos(kx,) 0 +ﬁdksin(kx2) KO |,
2

and the formula (3.36) is reduced to

*In formula (3.38) the sign of k is not important, but further in the text we assume that k is positive.
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. 2—-3v
— K(O)
AK, 22—v) ! ) 0
2(1 —v)* . ©
AK = | AKy, | ~ —¢&{ —kcos(kx,) 0 + —ETkM sin(kx,)| K
Ak %Kﬁ?’ ’

i AK})J‘norphology)

AK{ﬂorphOIng X (340)
AK%SkCW)

—2k.of sin(kx;)

T 1/2
o el

0y
VAN Y

When the perturbation function y is independent of x, (as in the present example) the
representation (3.35) for AK{™*™ takes the form (see Appendix B)

1-2v ¢ L—v [ Y (xy)KD")/0x5
(skew) - ¢ _ — 5 (K] —_— ! d " .
AK™ (x;) = ¢ /> " {axz(w(x;)Km)‘*‘ 7 j X —x, X2

V2 -

(3.41)

In particular, for constant K}y, K{{{ it reduces to

1—-2v

AK}Skew] (xz) = —¢
J2(1=v)

A {K{Wksin(kx,)+ (1 —v)KPkcos(kx,)}.  (3.42)

In addition, let us represent the components <o, (u'”)>, i,j = 1,2, in the form
<Gi/(u(0))> = tﬁll] + Ti/'a

where T);, i,j = 1,2, are constant 7-stresses applied at infinity.
Then the quantities K{moP"los¥ | j = I 111, are evaluated as

0 o 2
AK ool (x4) = ¢ J dx, J dx, { B (x1,05 — %)
B8 E 1

k=

— —x

0
0x,

2
x Y
i=1

W(xy, x)80 (u (x, x5, +0)))}+AK}T'“’“S), J=I1L1I.  (3.43)

The 7-stress terms are specified by

Festress Jﬂ\/% .
AK{T) (x,) = sy {21, sin(kx,) +vTy, cos(kx,)}, (3.44)
T-stress MV/EIE .
AK{Twes9(x,) = N {vT,, cos(kx,y)+2(1 —v) T, sin(kx,)}. (3.45)

When the unperturbed state corresponds to the 2-D loading (independent of x,), the
asymptotic formulae (3.15) are valid everywhere on the crack faces, and the quantities ¢}’
vanish. We remark that Xu ez a/. (1994) have additional morphology terms (with a factor
ﬁ) in the formulae associated with K;; and K;;; our calculations show that with the
correct choice of the weight functions these terms cancel ; also, we note the sign discrepancy
in the second term in (3.44).°

¢Xu et al. (1994) apparently employed in their calculations the skew symmetry — A% = A" (their notations),

though their formula (20) gives AY = A}'; in Appendix B we show that the weight matrix-function [U] should be
symmetric.
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We emphasize the presence of the term (z/2)"YG in (3.36) which is related to the high
order expansion for the stress components. This term was not indicated in the papers of
Gao (1992), Xu et al. (1994), Ball and Larralde (1995).

In comparison with the present work the papers by Xu er al. (1994) and by Gao (1992)
use the “travelling reference plane” and the local system of coordinates which moves
along the crack front. Gao (1992) uses a shift of the reference plane without changing its
orientation. In addition, Xu er al. (1994) rotate the reference crack in accordance with
the orientation of the local system of coordinates on the crack front. Consequently, the
coefficients K;° (in terms of notations of these papers) are not ¢-independent.

4. CONCLUSION

Our intention was to present in an explicit way the asymptotic analysis of the stress
intensity factors for a crack whose surface is characterized by a small out-of-plane deflection.
Clearly, the out-of-plane shift of the crack front produces a singular perturbation of the
boundary value problem, and highly singular terms occur in the formal analysis. We would
like to emphasize the importance of the two term asymptotic approximation for the stress
field and the weight functions near the crack front.

Even for the 2-D case we have derived formulae which generalize results existing in
the literature: first, our formulae cover the case when the T-stress is not constant, and,
second, the analysis does not impose any requirement to relocate a local system of coor-
dinates to the crack tip.

The 3-D case is substantially more difficult but we have shown how it can be treated
with relative ease using the method introduced by Willis and Movchan (1995). This method
uses the concept of generalized functions applied to the Betti identity written in terms of
Fourier transforms. As a matter of exercise the reader can try an alternative approach
(based on ideas similar to those displayed in Section 2), and one can observe that the two
term asymptotic approximations of the stress field and of the weight function are required
in a neighbourhood of the edge of the 3-D crack. Then, one can also discover that the
analysis of the 3-D edge singularity requires much more work than one related to a conical
singularity (the case of two dimensions) discussed in Section 2. Thus, the reader can
appreciate the effectiveness of the approach presented in Section 3 (we can derive the
asymptotic formulae for the stress-intensity factors just on one page). In addition, we would
like to mention that the asymptotic algorithm of Section 3 can be extended to the case of
dynamic cracks in three dimensions; this is the subject of a separate paper (Willis and
Movchan, 1997).
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and for valuable comments.

REFERENCES

Ball, R. C. and Larralde, H. (1995) Three-dimensional stability analysis of planar straight cracks propagating
quasi-statically under type I loading. International Journal of Fracture 71, 365-377.

Bower, A. F. and Ortiz, M. (1990) Solution of 3-dimensional crack problems by a finite perturbation method.
Journal of the Mechanics and Physics of Solids 38, 443-480.

Bueckner, H. F. (1987) Weight functions and fundamental fields for the penny-shaped and the half-plane crack
in three-space. International Journal of Solids and Structures 23, 57-93.

Cotterell, B. and Rice, J. R. (1980) Slightly curved or kinked cracks. International Journal of Fracture 16, 155-
169.

Gao, H. (1992) Three-dimensional slightly nonplanar cracks. ASME Journal of Applied Mechanics 59, 335-343.

Gao, H. and Rice, J. R. (1989) A first order perturbation analysis on crack trapping by arrays of obstacles. ASME
Journal of Applied Mechanics 56, 828-836.

Movchan, A. B, Nazarov, S. A. and Polyakova, O. R. (1991) The quasi-static growth of a semi-infinite crack in
a plane containing small defects. C.R. Acad. Paris 313, Serie 11, 1223-1228.

Movchan, A. B. and Willis, J. R. (1995) Dynamic weight functions for a moving crack. 1. Shear loading. Journal
of the Mechanics and Physics of Solids 43, 1369—1383,

Novozhilov, V. V. (1961) Mathematical Theory of Elasticity. Pergamon Press, Oxford.

Sih, G. C. and Liebowitz, H. (1968) Mathematical theory of brittle fracture. In: Fracture, Vol. 2, ed. H. Liebowitz.
Academic Press, New York.



3446 A. B. Movchan et al.

Williams, M. L. (1957) On the stress distribution at the base of a stationary crack. ASME Journal of Applied
Mechanics 24, 109-114.

Willis, J. R. and Movchan, A. B. (1995) Dynamic weight functions for a moving crack. I. Mode I loading. Journal
of the Mechanics and Physics of Solids 43, 319-341.

Willis, J. R. and Movchan, A. B. (1997) Three-dimensional dynamic perturbation of a propagating crack. Journal
of the Mechanics and Physics of Solids 45, 591-610.

Xu, G., Bower, A. F. and Ortiz, M. (1994) An analysis of nonplanar crack growth under mixed mode loading.
International Journal of Solids and Structures 31, 2167-2193.

APPENDIX A: APPLICATION OF THE BETTI FORMULA IN EVALUATION OF THE
STRESS-INTENSITY FACTORS FOR A 2-D SEMI-INFINITE CRACK

Here we clarify the derivation of formulae (2.31) and (2.44) presented in Section 2.
First, consider the case when the unperturbed problem concerns the Mode-I crack. Applying the Betti formula
to the vector function v!"" and the weight function {'" in the region Bg\S, [see Section 2, formula (2.24)] we obtain

3
¥ L(R) =0, (A1)
ka1
where
LRy = ,[ {{Ma, (v x)+ 1",V x) =00, (0 ) — ol o, (C1 1 x) ) dU,
XXl =R}
L(R) = —f {UMe, (v 1) +{8V0,0(v " s x) =i 0, (" %) — 00" a0 (0" X)} di,,
folix] = /R
and
IL(R) =Z¢J V(v x, £0)dY,.
X Sy By
As R — oo,

L (R) =0,
1 1
L(R) = = 5y 0i(0) + 5 0K\ (0) — K31 (0),
0

0
L(R)— D= —2J- EM(x,y, +0)F{[(x1)a,,(u‘”’ ;x5 + 0} dx,.
0X)

”

As a result, we have the formula (2.31).
In a similar way one can apply the Betti formula to the vector functions {'” and v!"" and show that

Ki(0) =0.

Now, let us clarify the derivation of the formula (2.44). The formal procedure is similar to what was presented
above and, as R — oo, the Betti formula applied to vV [see (2.39)] and "V yields (A.1), where

1 (R) = — (W04 (0) + wKy (0)),
L(R) = 3¥0,(0) —; 0K, (0) — K{(0).

and

0

Li(R) = F(X) = “2_[ C('.Zl)(xlv +0)%{f(x1)°'lz(“m X1, +0)} dx,. (A2)

. @
Let us mention that in the formulation presented in Section 2 the supports of the functions f{x,) and a,,(u® ; x,, +0)
do not intersect and, therefore, the quantity % (X) vanishes, and as a result we obtain formula (2.44). However,
one can extend the applied shear load up to the crack tip including the perturbation region. In this case the term
(A.2) will contribute to the final answer ; but in addition we would need to deal with the expansion of the load
function with respect to ¢. Our intention is to make the main text as simple as possible. Therefore, we concentrate
on the case where the applied load is independent of ¢, and, consequently,

mes {supp(f(x,}) () supp(c,,(u® ; x;, +0))} = 0.

Finally, one can apply the Betti formula to v!", given by (2.39), and to {'V in the region Bp\S,. As R — w0, we
deduce (A.1) with
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I,=0, j=13; I,— —K,(0).

Consequently, the relation (2.45) holds.

APPENDIX B: SYMMETRIC PART OF THE WEIGHT FUNCTION

The Fourier transform {U)
Apply the identity

— (Ul * {0+ CED = [ul o+ (UG + [0],— [EJi + (udy = 0 (B.1)

to the field u generated by a layer of body force f(x,., x;) distributed on the plane x, = 0. In this case the
displacement u and the stress o are given by

u=%xf and o =Sx*f,

where ¥ is the infinite-body Green’s matrix, and S is the corresponding matrix whose columns represent the
traction vectors. In the limit, when d — 0, one has

=0, [6]= —f and [E]=0, (B.2)
and relation (B.1) reduces to
—(UY f = [U]' x (o) = [U]' » (S *f. (B.2)
Therefore,
UY = —[U' * (83
or

Uy = =<8) = [U].

In terms of Fourier transforms one has

TS = ~T8¥[U. (B.3)

It follows from the static limit of the results by Willis and Movchan (1995) and Movchan and Willis (1995)
that’

vE, vey

. &+, & +ilés|
. 2i)'? . 3
TSy e L. LS Y0 S L T B4
2=EHil&D & +ile] & +HilGl
0 0 2y
In terms of the original variables x,, x, the matrix function [U} has the form
2 cos2?] 2sinp#] 0
- +2__‘,°°S[ ] 2_Vsm[< 1
/2x, H(:
[Ul(x,, x2) =A/—*X‘I“LI) 2 (B.5)

v 2v .
72 (63 4 x1) P sin [24] I— oy cosf2#] 0
0 0 1

where # = tan™'(x,/x,). Bueckner (1987, pp. 86 and 87) gives formulae which provide the stress intensity factors
generated by loading just on the upper face of a semi-infinite plane crack. The basic identity presented in Section
3.2 provides, for the perturbed crack. the representation

K“”(,\‘}) — [U] * <0.(0)>+<U>*[6(0)L

evaluated at (0, x,). When applied to loading T on the upper face only, {6'”)> = ~%T and [6"”] = —T.Comparison
with Bueckner (1987) requires [U](x,, x;) to be replaced by 2'*n*3[U](~x,, —x;) and (U>(x,, x,) to be replaced
by —2¥*2(U)(—x,. —Xx;); in addition, Bueckner’s angle Z is equivalent to our —#. These correspondences

"The formula {A.5) in the Appendix of the second paper cited has a misprint, an extra factor 2, and it was
taken into account when we derived (B.4).
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demonstrate agreement between (B.5) and Bueckner (1987), except for the sign of the second column of the
matrix.?
It is verified by direct calculation that the Fourier transform of the traction matrix is given by

i(1—2 ;0 0 51\\
%S5 = —4—~i(~:—‘)——( 00 &l B6)
@
Then, it follows from (B.3) that
e 12 e | 0 0 (2-9)¢,
<T>=i(l> A Tt 111 0 2-v)& | (B.7)
2 @=nd=n ey ‘
T =g —iviel —20-9E 0

The above matrix function can be represented as

Uy = U, +<U>_,
where (U), represents the Fourier transform of the “+ function (which vanishes when x, < 0), and (U)_
corresponds to the Fourier transform of the *“— " function (which is equal to zero for all x, > 0). Then, the second
term I, in (3.25) can be rewritten as

2

QU [0+ U = [0V] = J“ dqu d, (UYL (6] —x1, x5 —0) [0V ](xy, X0), (B.8)

.

and, therefore, the * —" function (U)" does not contribute to the final answer for the stress-intensity factors.
One could also predict that components of (U}, must be equal to components of the classical symmetric
weight functions derived by Bueckner (1987).°

The matrix {U) .
In order to derive the representation for components of {U) we shall analyze the inverse Fourier transforms
(with respect to &, and &) of the right-hand side of (B.7). This formal analysis involves the following two functions

%
Sj

(& —HED) "2, +i1E])

fl&. &) = i=12,

which can be split as

HELE) =7 )+ G) T=12 (B.9)

Here, /i) are the “+” functions analytic in the upper half-plane (in &), and (!’ are the ** — functions which
are analytic in the lower half-plane :

FIRT N P E—
£y HIED(= 217
L) = o . (B.10)
(& +ilED(—2iIE, )
and
s 1 ¢ i8]
f( )(g 36 )= N { + }!
PTG HIG] e, —ile ' (—2ile,)?
FEO(ELE) = ! { ! < } (B.11)
2 12520 7 Yz - . . )
S HIGT g —ilen™ (=218
Hence,
;0 0 —(2—wil&l
N C
W= 0 0 2-& ) (B.12)
(& +HED(-21E:D) 21—v)iley]  —2(1- e, 0 /
where

¥ We believe that formula (B.5) is correct.
® The paper cited contains misprints in the main formulae for the weight function ; this appendix includes an
alternative method of derivation of the weight functions and corrected formulae.
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A

AU T
¢ ‘() =)

N

Let <T>. (x}.&,) denote the Fourier transform of (U, with respect to x5 only. Direct calculations show

that
po0 0 — 2wl
_ iC . .
Oy, (x).8) = — —— e SMH() 0 0 2-wi | (B.13)
) ,Z" 2
(aeh RO-vils] =208 o/
Then, we introduce two auxiliary functions
pr(x, ) = &) e =,

and

It is straightforward to show that the inverse Fourier transforms of these functions are given by

1 ( ] ) N .
p [ pxi Eye ndé = ] —Re(x) +ix3) 2, (B.14)
Jo 2n
and
" ;o i, 4z 1 ‘ st 312 N
7 pa(x7, &) e dE; = —=Im(x) +ixy) L (B.15)
LU I LN

2y
0 0 S Chul
(x) +ix5)*
C 1 (2—-v)
QUY, (%), X) = e e 0 0 =T
(—20)' 227
21— v 201 v
Re -y - —Im () 0
Lo(x) iy (X +1xy)™? J
! 0 0 —(2—v)cos[; #)] |
1—2v 1 ’ -
= - o 0 0 —(2—v)sin[;#] | (B.16)
8/72— (=) (D +(x2)) , A ,
VA==V () +(x)) 2(1-vycos#]  2(1—v)sin[2#] 0

where # = tan™ ' (x5/x}).

As discussed after (B.5), comparison of (B.16) with Bueckner (1987) demonstrates agreement except (again)
for the sign of the second column and, in addition, our (3.2) entry corresponds to one half of that given by
Bueckner."'

Evaluation of I,

The results of the above calculations can be used to analyze the term L, in (3.26). Here we consider the case
when the perturbation function  is independent of x, (in particular, we have such a perturbation in the example
of the sinusoidal crack front presented in the main text). It follows from (3.14) that for negative values of x, the
effective traction vector [¢''] is given by

() [af] (xy, xa)
&
o] = s o] xix)
\

éx,
0

o Yix) R (x, x0) \
o
=l gl eR] (x.x) | (B.17)
\ |
\ 0 /

where [61)'] _ denotes the jump across the crack surface for the (i, /) stress component associated with the vector

field u™. We suppose that the relations (3.15) hold everywhere on the crack surface, and then, when x, < 0, one
has

"For the square root function of = = r ¢ we choose the branch \/z = r""? ¢’ with the branch cut along the
non-negative half of the real axis.

"' Since our method of derivation employs matrix manipulations and all other components agree, we believe
that formula (B.16) is correct.
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[6W] (x).x5) = —(—2mx)) 4K (x2),
(W] (. x0) = — (=2mx,) P4k (x0),
[6W (x,.x) = —(=2mx,) 2K (x0).

with v being Poisson’s ratio.
In our particular case the convolution <U)’, « [¢'!"] admits the representation

; 0 |
1-2v !
(U #[a (v xs) = — — e ( 0| (B.18)
8./ 2n(1—v
(x).x4)7
where
* ro (41)
r = 2Re 5[ d-\'zJ dx, W) Kip ' (xy) 7*1])
l‘ ! . ((x7 —x ) +ilxs — s ‘»‘ﬂ)}"/‘
. o 0)
Im {J dx, dy, — Y)Knl(x,) 7\}
o ((Y|~x|)+1(h*n) ‘(‘\‘) :
[ M DKW (x2))/éx,
+2Rel’ d\zj dv, () m(f_(\»mi}
L . . () —x ) 1, —x )" (=x )2
. ] A ‘s (2] X /‘»:__‘7
—4vIm H dx, dx, A xa)Kir'(x3)) i\' }
= g (X =X Hixs =)t (= v)hs

Note that first two integrals are singular. and are interpreted in terms of generalized functions.
The following relation holds

[ dx, 2
J S '\A’f"' T ‘\ "—‘-: BV (B 19)
(( X

) —a) xR K )

Also. the limit x} — 0 for a smooth function ¢(x.). which is bounded at infinity, one can write

T glyy)dxs o 7 dlx )d\
[ , '\_,’+i(.\_37\_2)a1l’.l‘w ) + ng(x;) sgn(xy). (B.20)
Here the Plemelj formulae were used. Thus, as x7 — +0,
o "o ¥ . %) dxs
J dsz S L U —— Y X2 ‘“1»)—‘ +2mg(x3). (B.21)
v ‘ (x] = x) i, —xa ) (= x )72 Jow N2

Next, the convolutions involving the non-integrable singularity are deduced by noting that their correct
interpretations in terms of generalized functions are obtained by differentiating (B.19) or (B.20) with respect to
x/. Thus, considering only x| > 0,

X T
J ((x; —x) +Fi(xs—x,))° “(—-\, )

o d, 4
= -3 —— o= . (B2
S (=) T X)) F i =) () +1(xs —x.))°
Further, for any smooth function ¢(x;) bounded at infinity
g x,)dx, (7 (x,)dx., s ) d
J L a1 d)de (B.23)
7 ¥ il =X ))° Xy~ (x5 —1x)) Jo. -

as x; — +0 (again, we use the Plemelj formulae). Finally, it follows from (B.18) that

. 1—2v | 3 1—v 7 SR
K = Jlim (U, x[o e, =~ i{%(Mgt’.n#—-lp.rtj fﬂ—"—)—,aﬁdxz}‘ (B24)
Y= I-v V2 x5 g Xy —X5

¥

which is consistent with (3.41).
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APPENDIX C: STRESS FIELD NEAR THE CRACK FRONT. HIGH ORDER TERMS

Here present the derivation (based on analysis of the displacement field near the crack front) of explicit
formulae for the vector coefficients A and G in the asymptotic expansion (3.22).
First by introducing local cylindrical coordinates (r, 6, z) such that

x, =rcosfl, x;=rsind, x,= —z,
we write the displacement vector in the following asymptotic form

u,
u =y |~ r'H{K () WD)+ Ky (x,) W) + Ky (X)W (6) }
u.
+ LX)+ {a, (x) V' (0) +a, (x,) VP (0) + a3 (x2) VP (6)

+ Ki(x2) YO (B) + Ky (x) T2 (0) + Ky (x2) TR ()} + O(). (C.1)
where & is a linear (with respect to r) vector function which produces constant stress field ; the vector fields Y
compensate discrepancies of high order in the Lamé system and traction boundary conditions left by the terms

r'PKWe i =1,2,3
The following notations are adopted

36 0
—co$— +(2k—1)cos 3

W, 2 2
) 2 12 1 39 6
W) = W(,” R .
©) ‘ (n) 8u | sinZ —(2k+1)sins
W!:l),/ 2 2
0

36 7
3sin—2— —{(2k—1)sin¢

wo 2
W(z)(g): W(’Z) _ z I”_l_ 1 o
‘ n) 8u|3cos= —(2x+1)cos=
W 2 2
0
Wf‘”\ 0
WO@) = | WP | = — (z)l/ll 0
W(B)/ " # H g
¢ sin
56 0
0057+(2xw3)cos§
vViNg) = 50 ¢
© —sin— +(2x+3)sinz |’
2 2
0
(50
55in—2~ +(2rc—3)sing
V@) = 50 a9
) 5cos— —(2k+3)cosz |’
2 2
0
[0
vog=| ° |
W
sin

as in the main text, x = 3 —4v, where v is the Poisson ratio.
The standard representation for the Lamé operator in the cylindrical coordinate system is given by
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e ¢ o 0 2
cyl) gy —27 (0 N -1y (1) . )
L = { L ( ar 69)+r L (r 80>+L azz}u,

where
(@ —DE+20+un’ (A&~ A+ 3 o
LOE ) =| A+pén+@+3wn  w&@~D+ A+ 200’ 0
0 0 wE +n7)
{0 0 é\\
LG =G| 0 0 n)
W+t o 0/

L&, ) = diag {p, 1. 2u+ 4},

and for the operator of traction boundary conditions ( for a half-plane crack) one has

oo oy [T 2 2
B (5 g 520 "f'“(“)’—{"““”( i FE
ta )/
where
i un wi—b 0, '/0 0 0y
B“”(g“,n)=(2u+/’.(5+l) Qu+iy 0], B‘U:ko 0 /\
! 0 0 un 0 u OJ'

The vector functions YV, j = 1,2,3 from (C.1) solve the boundary value problems

rv:L(m r[? fj_ ’.7Y|n(0)\ _r—lL(l) [} ,_ j lZw(/)(O]l
00 or ’()

J 0
¥ 1B((l| (_(, :0> ’Mrn,p((})} — B(Hrl,ﬁw(n(in). (C2)
1=t 7
Direct calculations show that
'T“) 0 1
for
r“):(T},”): ],f 0 \‘
2uy/ 2n 6 1 30
Ly / ~ —__ el
Y cos 5 3(2K+ 1) cos 5 J
2 0
(Y 1 .
T (T‘f’ - S s
/2n 0
Ly Ky sin—
.8
Y”’\ Ksmi
| 2
r(3l — , 0
t | lSu( > (K—I)COSE
1‘2“
0

When the crack is shifted in the x;-direction by a small amount ey, the vector of tractions, evaluated on the
reference plane ahead of the crack front is characterised by the following asymptotic formula'?

[013 ( 00 1y Ky
L ny W
O3 | = — |, |0 0 0} Ky |[+P+x{?A— -G, (C.3)
| V2, ( A 27
03, SN URDRY A
where I is the identity matrix, and A and G are given by
2In order to obtain (C.3) we evaluate components a4, 613, 63 for the field (C.1), let 6 = —ey/x, and expand

to first order in ¢ (keeping x, fixed).
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1/2\'
12pa, —3ly Kii(xz)

A =

N

12ua,

—12ua,

2‘~|Z
( ) Ki(x)
G = n
a2\
~ 12pa, 3 ;r»/ Kin(xy)

One can verify directly that formulae (C.4), (C.5) are consistent with (3.23).

3 1 2y .
5 as = (2 —3) (;[ ) Kitx)
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