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Abstract~Asymptotic analysis is presented for elasticity problems concerning out-of-plane per­
turbations of plane cracks. Some of the subtleties are first illustrated through consideration of two­
dimensional problems; we derive formulae that generalize slightly those already available. Solution
of the more difficult three-dimensional problem is facilitated through novel use of an integral
identity. The asymptotic formulae that are developed for the stress intensity factors are more flexible
than those available previously. in that no special system of coordinates based on the perturbed
crack edge is employed. (ij 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The present paper deals with two- and three-dimensional problems of linear elasticity in
infinite elastic media containing slightly nonplanar cracks. We consider a smooth per­
turbation of the crack surface and obtain asymptotic formulae for the stress-intensity
factors. For the case of two dimensions our results generalize formulae derived by Cotterell
and Rice (1980). For the case of three dimensions we present asymptotic formulae for the
stress-intensity factors (for the case of the out-of-plane perturbation of the crack) and give
analysis which may be useful for the explanation of apparent inconsistencies between results
of Gao (1992), Xu et al. (1994) and Ball and Larralde (1995).

Asymptotic analysis of the stress intensity factors for problems relating to deflection of
the crack trajectory can be used for the prediction of crack propagation in an inhomo­
geneous elastic medium (for a two-dimensional case see the work of Movchan et al., 1991 ;
three-dimensional numerical simulations were performed by Gao and Rice, 1989; Bower
and Ortiz, 1990; Xu et al., 1994). It turns out that the first-order asymptotic approximation
of the stress intensity factors requires the two term expansion of the stress field near the
unperturbed crack tip as well as two terms of the expansion of the Bueckner weight
functions (see Bueckner, 1987).

As a matter of motivation we analyze several elementary examples.

1.1. A rigid shift ofa semi-infinite crack
First, consider the perturbation of stress-intensity factors due to rigid shift of a semi­

infinite crack

So = IX:X2 = O,x l < O}.

The resulting crack after the transformation is

* Author to whom correspondence should be addressed.
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Fig. I. Rigid shift and rotation of a semi-infinite crack.

(1.2)

where 0 < c;« I (see Fig. I(a)).
Consider a stress field in a homogeneous plane. The equilibrium equations can be

written in the form

The superscript (nc) is for "no crack", and it is assumed that the support of g~nC) does not
intersect the surface where the crack will be located. Introduction of the crack So generates
additional stresses (Jij which must cancel the tractions associated with (J(nc) ; thus,

The crack face weight function for the semi-infinite crack (1.1) is given by

(1.4)

The following relations (see Sih and Liebowitz, 1968) hold for the traction vector
ahead of the crack

(1.5)

where

(1.6)

(1.7)

Introducing instead the crack S, requires that
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Using the relations (1.3) and

(see Novozhilov, 1961) together with formulae (1.8) we obtain

i = 1,2.
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(1.8)

(1.9)

( 1.10)

where KID), KIf) represent the stress intensity factors for the unperturbed crack. This
representation indicates the importance of high order terms of the asymptotic expansion
of the stress field near the crack tip. Further in the text (Section 2) we discuss the case of a
small perturbation of an arbitrary shape.

1.2. Rotation ofa semi-infinite crack
Consider a rotation of the semi-infinite crack So through a small angle BW in such a

way that the resulting crack is given by

(1.11)

Also, introduce the system of coordinates Ox', x; with basis vectors

(l.12)

as shown on Fig. l(b).
For a homogeneous plane (no crack is introduced yet) the stress field admits the

following expansions:

aO"(TI;)
- (nc) (0) . I ~ ( 0) 2 (nc) (- 0)- 0"22 X I • - BWX I ._~~ XI. - BWO" I 2 X I ' ,

eXI

.... (oc)

(nc) ( ) ~ (nc) (_ 0) + - 00" 12 (_ 0) ( (nc) ( 0) (nc) . - 0»
0"1'2' XI, ewx I - 0"12 XI, ewx I -:1- XI' +ew 0"22 XI' -0"11 (XI.

(X2

~ (nc) ~
( ) (JO" J J e

= 0" I~ (X 1,0) - BWX I :I~-':(X1,0) - :i-(BWX I T(x I»,
(Xl eXI

where we adopt the notation

(1.13)

(1.14)
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(1.15)

When we introduce a crack So the quantity (1.15) can be regarded as a T-stress acting along
the crack face, in view of the relations (1.3), (1.9).

Next, let us introduce an artificial assumption related to the applied stress field: it is
assumed that components a;;'C) have a bounded support. No doubt, this restriction is not
appropriate for a real physical model, but it enables one to use expansions (1.14), (1.15)
on a semi-infinite interval which is good for the purpose of the simple illustration presented
here (a comprehensive asymptotic analysis is presented in Section 2). It is easily verified
that

and

_ w (0)- --·KII2
( 1.16)

(1.17)

Consequently, the expansions (1.13), (1.14) together with eqns (1.6) applied to the effective
tractions on S" yield

3w
K ~ K IO ) - c' K(O)

I - I <, 2 II,

(1.18)

These formulae agree with the results obtained by Cotterell and Rice (1980) when specialized
to the case T = const that they considered. It should be mentioned that the local system of
coordinates has its centre at the crack tip. It will be shown in Section 2 that an additional
term in the asymptotic expansion of the stress intensity factors is required for the case when
the crack tip is moved away from the origin.

It is tempting to assume that the local distribution of the stress near the crack end
determines entirely the first order perturbation of the stress intensity factor for the case
when the crack slightly increases its length. However, this assumption fails. It is shown
explicitly in the next subsection.

1.3. Comparison o/perturbation problems/i)r extension o/finite and semi-infinite cracks
The first example deals with a semi-infinite crack So subjected to loading by a pair of

forces applied on the crack faces; the second concerns a finite crack

in a plane where a remote uniform load is applied at infinity. The main objective is to
evaluate the perturbation of the stress-intensity factor due to the relocation of the crack tip
along the Xl-axis.

1.3.1. A semi-infinite Mode-/ crack. Let d denote the distance between the origin and
the point characterising the location of concentrated forces of intensity P. Also, suppose
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that the stress field satisfies the homogeneous equilibrium equations and vanishes at infinity.
Then, ahead of the crack

where

(1.19)

i '1

K(OI = p I "- AI =
J '-J lId'

Ki") I

S;, c(v ~"

Now consider a small increment of the crack length, so that the right end of the crack will
be located at XI = [; (the left end is supposed to be fixed). In this case the new stress intensity
factor Kjf) is given by

K~f) = p ( 1.20)

with CJ = ..;7Ji. This is consistent with the static limit of the formulae derived by Willis
and Movchan (1995).

1.3.2. A finite Mode-l crack. Assume that the elastic plane with the crack So.! is
subjected to a uniform remote stress (J;'2 = (J; the body force density is supposed to be zero,
and the crack faces are free of tractions. Then the stress intensity factor is given by

and the asymptotic approximation of the stress (J 22 ahead of the crack is specified by

(J(X I + /:2)
(J 22 = _···c:=:========

XI(X\ +1)

with

(1.21 )

Let the crack length be increased by a small amount I: in such a way that the left end of the
crack does not change its position whereas the right end is relocated to the point Xl = f:.
The new stress-intensity factor is given by

where

I
r
1[(T+~) KID)

KII) = (J = KIO) +1-'-- ~ + 0 1[;2)
I '-J 2 I' 2/ \

= Ki"'+GC2AI+0(e2), (1.22)
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One can observe that the constant coefficients CI and C2 differ by the factor 2/3. This
fact indicates that, in general, it is not enough to know the distribution of stress near the
end of the unperturbed crack. The additional information required is the asymptotics of
the weight functions which depend, of course, on the geometry of the entire region. We
illustrate this statement through the following elementary consideration.

It can be easily verified that if ahead of the crack, located on the xI-axis, the stress field
produces

(1.23)

and if the Mode-I weight function h(xl) has the asymptotic expansion

(1.24)

then for a small increment 8 of the crack length (we are looking at the cases where the crack
is semi-infinite or its left end is fixed) the stress intensity factor at the right end is given by

(1.25)

For the case of a semi-infinite crack

q = 0,

and for a finite crack of the length /

I J-2q= -- -
2/ 1t

(it follows, for example, from the explicit solution for a finite crack presented in Sih and
Liebowitz, 1968). Thus, for a semi-infinite crack we obtain the formula (1.20), and for the
case of a finite Mode-I crack one has the result which agrees with (1.22).

In the text below we present a comprehensive asymptotic analysis of the stress-intensity
factors for problems involving small perturbations of the crack front.

2. TWO-DIMENSIONAL SEMI-INFINITE CRACKS

Let

(2.1 )

where 8 is a small positive non-dimensional parameter, and !(x l ) is a smooth bounded
function which tends to zero as XI -4 - 00 (see Fig. 2). Also, let Q, = 1R2\5,.

A crack which occupies 5" perturbs a stress field which, in the absence of the crack,
would be (j~;C>, with corresponding displacement field u(nc), taken to be a field of plane strain.
The additional displacement induced by the presence of the crack is denoted by u. It satisfies
the equilibrium equation
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Fig. 2. An out-of-plane perturbation of a 2-D semi-infinite crack.

(2.2)

with the boundary conditions

a~n) := a;;(u; x)nj = - a~jcl(x)nj (2.3)

on either side of Sf (x E Sfn, and the condition

u(x) -+0 as Ilxll-+ 00. (2.4)

When 8 = 0, the corresponding solution u(O), defined over the domain 0 0 := 1R2\So can be
found by elementary means. In particular, the traction components a\o/., a~o.] just ahead of
the crack tip, at x = (r, 0), are given as

where [compare with (1.5)]

We consider separately two cases: (i) when the unperturbed crack is subjected to
Mode-I loading (a\n{)(x 1, 0) = 0); (ii) when the unperturbed crack is subjected to Mode-II
loading (a~n~)(xl'0) = 0).

2.1. Perturbation of the Mode-l crack
In the vicinity of the crack tip, the displacement field u admits the following asymptotic

representation, relative to local polar coordinates (r f , Of) as illustrated in Fig. 2 :
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u ~ L {r,I12 Kj(c)(J)W(I,J,.) +r,3/2 fi;A,(c)g(J)(8,)}+e(c) + T(c)r,·x(8J as r, ---+ O. (2.5)
j~1.11

The coefficients Kj are the stress intensity factors, and Aj provide the coefficients of the
"next terms" in the traction components ahead of the crack; e(I:) is a constant vector and
T(e) is the T-stress. The angular functions (J)(j), gul, X are given by (see Williams, 1957)

[

8 30 ]<I>,ll) (8) I (2K' - I) cos 2- cos 2
(J)(I)(8) = ( ) = --- .

<1>(1) 8 4 /2; 0 30
(I ( ) Ilv -(2K+ l)sin"2 +sinT

[

0 38 ]<I>~II.)(8) I - (2K -I) sin "2 + 3 sin 2
(J)(l1)(0) = ( ) = ----= ,

<l>lll) e 4 /2n (J 38
(I () Ilv -(2K+ I)cos~ +3cos-

2 2

[

0 Sf)
3;1) (0) I (2K - 3) cos"2 + cos -.2..

g(l)(O) = ( ) =--=
3~1) (0) 121lj2n (2K + 3) sin ~ - sin ~~

2 2

[

() 50 ]2;").(0) I (2K-3).sin"2+ 5sin 2-
;:(11) (0) - ( ) - ----.-
.... - 2(}1)(8) - 12,11 /2n 0 50'

I v -(2K+3)cos- +5cos-
2 2

(
Xr) I (2 cos(20) + K - I)

X(O) = =-- ,
XO 811 - 2 sin(20)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

where K = (Je + 31l)/(A + 11) = 3 -4v; v is the Poisson ratio.
The stress intensity factors are assumed to depend smoothly on the small parameter e.

Thus,

Here, KII(O) = 0 because the unperturbed crack So is subject to Mode-I loading. We employ
the notations

K~O) = K;(O), j = I, II.

Further analysis will provide the derivatives Kj(O), and hence the first order corrections to
the stress intensity factors.

A formal solution of the problem (2.2)-(2.4) may be developed as an asymptotic power
senes
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(2.11)

with respect to e. The principal part u(oJ satisfies the boundary value problem for the limit
region no

u(OJ(x) --> 0, as Ilxll --> 00.

Formally, for the second term of the asymptotic series (2.11) one can write

(2.12)

(2.13)

(2.14)

(2.15)

- if) < Xl < 0, (2.16)

U(I) --> 0 as Ilxll --> 00. (2.17)

Also, it is assumed that u(1) vanishes at infinity.
Strictly, the series (2.11) is an outer expansion, not valid in a boundary layer distant

O(e) from So. The boundary conditions (2.16) define its second term, because the tractions
specified there are bounded, and equilibrium can be imposed uniformly across the boundary
layer.

Using (2.13) and (2.16) we can state more precisely that

(2.18)

Let (r, e) denote polar coordinates related to the tip of the reference crack So. Then,
the field U(OI admits the asymptotic approximation

(2.19)

(In our particular case K~?) = 0.) Direct calculation gives

(2.20)

Then, it follows from (2.18), (2.20) that

It should be emphasized that in the general case involving Mode-II loading, singular
terms occur in the formally derived traction boundary conditions for u(1). As we show below
these terms indicate the presence of the boundary layer which occurs near the crack tip due
to relocation of the crack front. For the case of Mode-I loading we are just lucky to have
bounded tractions in the problem for U(1I.

Let us introduce local coordinates y = (Y"Y2) corresponding to the perturbed crack
S,,:
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( leW) (0)y = x-
-ew I elf; ,

(2.21 )

where If; = /(0) and to first order approximation w =1(0). The system of coordinates y(n

has its origin at the end of the crack S" and the orientation of the axes corresponds to the
orientation of the crack contour at XI = O.

The following expansion holds

a f( 1u = u(O)+e-
oe EO)

(2.22)

It can be verified by direct calculation that the representation (2.22) is equivalent to

u = u(O) +ec'(O)+ej~1I {K;CO)rI/2cb(J) (0) + Ki(O) [-If; a:
2
(r'/2cIl(f)(0))

+w (Y2 -f--- - YI ~. )(r'/2 cIl(f) (0)) +wr l !2 ( - <I>~il ((/), <I>\j) ((/))/J
oy, 0Y2

(2.23)

We shall also need the following vector functions which satisfy a homogeneous Lame
system and homogeneous traction boundary conditions on the faces of the crack So.

(2.24)

where

[

30 ()

(
\fI(I)) (2K + I) cos 2 - 3 cos:2

'1'(1) = ' = _ I
'Pg) (l +K) /8; . 3() . () ,

v - (2K - I) sm ---- +3 sm-
2 2

(
'P(]])) [_(2K+I)Sin~+Sin~]

'1'(11) = ' = _ I
'Phil) (I +K) ~ 3() ()'

" - (2K-I) cos- +cos-
2 2

The following relations are useful

(2.25)

and
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(2.27)

It follows from (2.23) and (2.25)-(2.27) that (here the assumption KII(O) = AII(O) = 0
is used)

u(1) = c'(O)-t/J I~K K 1(0),CII)(x)+r 1
/
2 {K;(O)<I>(I)(e) + (nt/JAI(O)- ~WK,(O)

+K;, (0)) <1>(11) (e) } + smaller terms. (2.28)

We emphasize that the coefficients KI(O) and A,(O), corresponding to the unperturbed crack,
are given.

Clearly, the second term in (2.28) is characterized by a high singularity (the cor­
responding energy integral is infinite). Formally, this singular term occurs due to relocation
of the coordinate system from the actual crack tip to the end of the reference crack So.

Physically, it indicates existence of a boundary layer in a neighbourhood of the perturbed
crack front; the expansion (2.28) must be treated as an outer expansion which is valid in
the exterior of a neighbourhood of the crack.

In this particular paper we have no intention to analyze the boundary layer. We have
to obtain just the quantity K; (0) characterising the perturbation of the stress intensity
factor.

Let us consider an auxiliary field

(2.29)

The vector function v(1) satisfies the homogeneous Lame system (2.15) and the boundary
conditions (2.16). It also vanishes at infinity and does not have a singularity at the tip of
the reference crack So ; as r -> 0 the vector function v(1) admits the asymptotic approximation

(2.30)

Using standard technique we obtain (the details of the calculations are presented in Appen­
dix A)

(2.31 )

where

with h being the weight function (1.4).
Consequently, the stress intensity factor K II is approximated by
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One can also show that Ki(O) = O. Hence,

(2.32)

(2.33)

In the next subsection we consider the shear mode crack and asymptotic formulae for
the stress-intensity factors.

2.2. The Mode-II crack
Now suppose that the displacement vector u(x) satisfies the homogeneous system (2.2)

and the condition (2.4) at infinity, but

(2.34)

Again, we use the asymptotic formula (2.11). In our particular case the coefficient u(l)

satisfies the system (2.15), it vanishes at infinity, and the formal boundary conditions (2.18)
are replaced by

~

( (I). +0) -~- Jfi( .) «0). +0)10"21 U ,XI, _ - l t X'O"II u ,XI' _ f·
(,X 1

(2.35)

The asymptotic formula (2.5) remains valid near the actual crack tip. In the present
case,

and it follows from (2.23) (which is written for the general case) that

+ ( - J~ IjJA II (O) + ~WKII(O)+K;(O))r l
/
2 cJ)1I1(8)

- (~IjJAII(O) +wKII (O))r l /21'(11) (8), (2.36)

where the vector functions 1'lil, j = I, II are given by

(

Y(II
I
) I1'(11) _ r _

- Yil l ) - J1~
[

30 ]cOS 2
. 38 .

-Sill 2
(2.37)
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The fields r-1jZY(l), r
1jz

y(1I) satisfy the homogeneous Lame system, but the shear components
of tractions do not vanish. Formally we can write

( -1/zY(ll)1 _ +. I . liZ
(Tl2 r 0= +, - _ ----;:=r

- I')
yi ..n

(T (1,I/zy(I1»1 = + --~I~r-·I/Z
12. O=±rr _ /-- •

v 2n
(2.38)

As before, the field ull) has a strong singularity which indicates the presence of a
boundary layer in a neighbourhood of the actual perturbed crack. So, practically, one has
to regard (2.36) as the term in an outer expansion corresponding to the first correction
term in the representation of the displacement field.

We shall try to use a trick which is similar to one employed in Section 2.1. Namely,
we introduce an auxiliary vector function

and then consider

This vector function satisfies the homogeneous Lame system

Lvi I) = 0, in Piz\So,

and the following traction boundary conditions

(2.39)

(2.40)

(2.41)

,~ I
± (J2mfJA lI (0) +wKu(O) -;=. (2.42)

yl2nr

Note that, as we approach the crack tip, the first term on the right-hand side (2.42) is
singular, and the second and third terms compensate this singularity, so that. as a result,
the right-hand side of (2.42) is bounded in a neighbourhood of the crack end. In contrast
with the case related to the Mode-I crack, the vector function vO) does not decay at infinity:
it is characterised by the following asymptotic formula

(2.43)

It follows from (2.39) that in the vicinity of the crack end

Now, in order to evaluate K;(O) and K;,(O) we apply the Betti formula in the region BR\So
to the vector functions VOl, {(I) and V(I), {IIIl, where BR is the ball {x: Ilxll < R}. The detailed
calculations are presented in Appendix A. Taking the limit R -- 00 we obtain
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Kil(O) = o.

(2.44)

(2.45)

Consequently, for the case when the unperturbed crack corresponds to the Mode-II state,

(2.46)

and

(2.47)

Clearly, for general loading a combination of formulae (2.32), (2.33) and (2.46), (2.47)
can be used. (We deliberately assume that the load is applied outside of the perturbation
area, otherwise one would need to deal with series expansions of applied tractions with
respect /;; it does not produce any difficulties, but just yields some additional terms in the
traction boundary conditions involved in the problem for u(1).)

2.3. Comparison with formulae of Cotterell and Rice
The problem described in subsections 2.1 and 2.2 is not new, We refer to the classical

paper of Cotterell and Rice (1980) where the perturbation of the stress intensity factors
was analyzed for the case of a small deviation of the crack trajectory. These authors
introduced some additional restrictions: namely the T-stress was supposed to be constant
and also the local system of coordinates was relocated to the tip of the actual perturbed
crack (to avoid apparent singularities in the asymptotics of the displacement field which
occur due to a singular perturbation of the boundary). Cotterell and Rice (1980) derived
the following approximation

(2.48)

(2.49)

(For the sake of convenience we have adopted the notations used in the first two parts of
the section.) One should emphasize that the coefficients F:;0) ,j = I, II in (2.48), (2.49) differ
from K~O) in (2.32), (2.46), because of the relocation of the local system of coordinates to
the end of the perturbed crack.

In the general case when both the longitudinal and transverse perturbations occur, so
that

the asymptotic formulae for the stress-intensity factors, that follow from Section 1.1, 2.1,
2.2, have the form
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(2.50)

(2.51)

As in the previous sections, we use the notations ijJ = f(O) , w = /(0), and u(O) denotes the
displacement field associated with the unperturbed crack. These formulae agree with (2.48)
and (2.49) in the special case that q; = ijJ = 0 and tTl I (u(O) ; XI' +0) is constant.

3. THREE-DIMENSIONAL SEMI-INFINITE CRACK. OUT-OF-PLANE DEFLECTION

3.1. Formulation
Here we consider a three-dimensional perturbation of a plane crack. The surface of

the perturbed crack is S" where

(3.1)

The function ijJ(Xb X2) is assumed to be smooth and bounded (see Fig. 3). The unper­
turbed plane crack has surface So, to which So reduces when 8 = O. In-plane perturbation
of the crack front was analyzed by Gao and Rice (1989). Also, the solutions of Willis and
Movchan (1995) and Movchan and Willis (1995) for the dynamic in-plane perturbation of
a propagating crack reproduce the results of Gao and Rice in the static limit.

The medium is linearly elastic and isotropic, and it is assumed that the crack perturbs
displacement and stress fields u(ne) and aCne). These are as introduced in Section 1.1 except
that now they depend upon XI and X3, and an unperturbed Mode-III component is also
admitted. It is assumed, however, that the body force associated with the field u(ne) has a
compact support which does not intersect the crack surface So' The additional displacement
introduced by the presence of the crack is denoted by U(X; 8). It satisfies the homogeneous
Lame system

Fig. 3. A slightly nonplanar 3-D crack.
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Lu(x; B) = ° in 1R 3\S, (3.2)

and the traction boundary conditions on the crack surface

[n·O'(u;x)+n·O'lnCl(X)]S, = 0. (3.3)

This displacement u(x; e) tends to zero as Ilxll --* Cf) and is discontinuous across S,.
In the particular case B = 0, the displacement u(x; 0) is written as U(Ol(X), and the

corresponding stress is (j(O\x). It is convenient then to employ the notation

flu = U(X;B)-UIO)(x), flu = O'(u;x)-O'(O)(x). (3.4)

The objective is to flnd expressions for the corresponding stress intensity factors K;(X2; e)
(j = I, II, III) or, equivalently, for the perturbations

(3.5)

3.2. Thefundamental identity
While it might be possible to develop an asymptotic algorithm along the lines presented

in Section 2, it is evident that the third dimension would introduce major complications. It
is, in fact, possible to proceed much more directly, by making a modest adaptation of a
method introduced for in-plane perturbations by Willis and Movchan (1995) and Movchan
and Willis (1995). This is outlined now.

Take d> 0. Then, for all B smaller than some eo, the crack surface Sf, is contained
entirely within the region {x: - d < X3 < d}. Now let u'(x), u'(x) be displacement and stress
flelds that satisfy the homogeneous Lame system for all X3 < °and all X 3 > 0, and suppose
that u'(x) decays to zero at some suitable rate (specified precisely later) as Ilxll --* CfJ. Observe
too that the displacement and stress pair

u"(x) = u'( -x), O'''(x) = -0"( -x)

also satisfy the conditions specified for u', 0".

Now apply Betti's reciprocal theorem to large hemispheres

B i = {x: ±X3 > ±d, Ilxll < R},

for the flelds u(x;£) and u"(x-x') where x' has components (X'I,X;,O). With suitable
assumptions of decay at infinity, taking the limit as R --* \£' yields

Taking the difference between those two identities now yields
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f~oc dX 1 f~ocdX2 [tl(U;'(XI-X'I,X2- X;,X3)a,3(U;/;)

-a;',(x l -X'j, X2- X;,X3)U,(Xl,X2, ±d;/;))lX)~d = o. (3.7)
x]= -d

For an arbitrary function/(xl' X2, x 3) we introduce the notations

[f]AXj, X2) =f(X I ,X2,d)-f(xj, X2' -d),

1
(1)AX l' X2) = :2 {(xj, X 2, d) +f(xj, X2' - d)}.

and, therefore, (3.7) can be written in the form

J~oc dx] J~: dX2it ([u;JAX I -X'I' X2 -x;)(an(u)Axl ,x2 )

+ (u;')Axl - x;, X2- x;)[adu)]Axl' X2) - [a;',]d(XI -x\, X2 -x;)(u)Axj- x 2)

-(a;',)Axl-x'I,X2-X'2)[U;]Axj,X2)} = O. (3.8)

It is assumed here that /; « d, and then the identity (3.8) holds for the stresses and dis­
placements (1, u which solve the given crack problem. Furthermore, (3.8) can be expanded
in a power series in /; as /; --+ 0, keeping d fixed. This yields, to first order in f.,

Here u(l) is the coefficient of f. in the outer expansion

of the solution u(x,f.); the notation aU):= aij(u(I») is adopted.
Equivalently, in terms of u', (1'

(3.10)

Here (1(1) and (1' denote the column vectors with components aW, a;3' The superscript t
means transpose and * denotes convolution with respect to XI and X2' As d --+ +0. we use
the following notations

[f] = lim U1(, (f) = lim (1)d'
d-+O d __ +O

Now, by writing three linearly independent solutions side by side, u', (1' can be replaced by
matrices U, :E. The columns of the matrix U satisfy equilibrium equations with zero body
force. The matrix function U is selected (see the static limit in Willis and Movchan, 1995
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and Movchan and Willis, 1995) to be homogeneous of degree - 3/2, with a discontinuity
across the half-plane

so that

(3.11 )

The components of the traction matrix 1: are continuous, and equal to zero on the half­
plane across which U jumps:

Then, as d-. +0, the identity (3.10) implies

(3.12)

In particular, when x') > 0

(3.13)

since ([u() T * <1:) )(x'), x;) = 0 for positive x').
The identity (3.13) applies, in particular, when x') -. + O. Then, it requires knowledge

of the traction vector all) on So and of its asymptotic form on the plane X3 = 0, as x) -.
+0. The explicit calculations to follow will show how this delivers expressions for the

perturbation t1Kj to the stress intensity factors.
The explicit formula for [V] is recorded in Appendix B. The matrix-function <V) that

appears in (3.12) was not discussed by Willis and Movchan but, as shown in Appendix B,
it is related in a simple way to [V]. Both [U] and <U) are closely related to the classical
weight functions of Bueckner (1987). Similarities and differences, including misprints in
Bueckner's formulae, are discussed in Appendix B.

3.3. Projection of the stress field on the reference plane
Now, we perform the calculations necessary to evaluate a(l) on the reference plane

)'-3 = 0 on So, and just ahead of the crack.
Formally, outside a neighbourhood of the crack front one can derive the following

formulae for the traction components on the half plane x) < 0

(3.14)

where the stress components a;J) evaluated on u(O) are supposed to be given.) It follows,
since the faces of the unperturbed crack are the traction free, that

Note that the principal part (with respect to r) of (3.14) has a different sign on the upper
and lower crack faces.

The local asymptotic representation of the stress components near the crack front is
given by the well-known formulae (see, for example, Sih and Liebowitz, 1968)

I In particular, if the unperturbed stress state is two-dimensional. on the crack surface on has 11\°,1 = 0,
(J~oi = v(o')o/ +(T\~)) and a\OI' = cr\~..?+(J(lnl

c
) •



On perturbations of plane cracks

I {( 0 50) (. 0 . 50)}(J ~ ~~- K 5cos- -cos- -K sm- -sm--33 ~ I 2 2 II 2 2'4y 2nr

KIll tJ
(J23- r;:;-- COS J '

yl2nr -

(J ~ _I~ {-K (Sin~ _Sin
50)+K (3COS~ +cos?_~)}

13 :-.. I 2 2 II 2 2'
4y12nr

K LII . ()
(J 12 ~ - ,-_. sin;;; .

~2nr ~
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(3. I5)

Clearly, for the case of a perturbed crack front one can use the formulae (3. I 5) in the local
coordinate system; however the orientation of the system may change according to the
change of the crack front, and the origin may be shifted as wei!.

As mentioned, in this paper we analyze the out-of-plane deflection of the crack front,
with the in-plane perturbation analysis being regarded as known (see, for example, Gao and
Rice, 1989; Willis and Movchan, 1995; Movchan and Willis, 1995). Thus, the perturbation
includes two main parts:

• Superposition of rotations with respect to the X2-axis and xI-axis. To leading order
approximation, the new local coordinates (x';, x~, x'~) and the original coordinates are
related by

x '{ I 0
'W) X')x~ ~ 0 I £}' X 2 ,

x" -I;)! I3 -DW Xv

where 0 < I; « 1, and I;}', £OJ are small angles of rotation about the XI and X2 axes.
• Out-of-plane shift (with the same orientation of the axes) : the new local coordinates are

specified by

X'I = Xl' X2 = X2, X; = X3 -/:t/J.

Here t/J denotes the deflection of the crack front along the x3-axis.

Considering first a local rotation, one can write the following relations for the stress
components:

(3.16)

The orientation of the axes of the coordinate system (x';, x~, xD corresponds to the orien­
tation of the actual perturbed crack front, and, therefore one can use the asymptotic
formulae (3.15) for components (J;~. Then, we evaluate the stress on the reference plane
X3 = 0 for XI > 0 (one has to set (~ = -£(v):
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(3.17)

It follows from (3.16), (3.17) that ahead of the reference crack (Xl> 0, X 3 = 0) the traction
vector (1 = ((113' (123, ()33)' admits the asymptotic representation

1
()c:::' r,:;--={I+c;O(w,y)}K,

v' 2nx]

where I is the identity matrix, and

(3.18)

n=
o 0

o 0

3wl2 2y

-W
I2) (KII\

-y(1-2v) , K = KIII !.
o \ K1 I

Second, we describe the stress field on the reference plane X3 = 0 ahead of the crack
front (Xl> 0) for the case of a perturbation produced by a shift along the xraxis.

It is assumed that Xl is greater than the distance from the crack front to the reference
plane (or, equivalently, we are describing the outer field corresponding to the exterior of a
neighbourhood of the crack front).

Ahead of the crack, the traction vector has the form

K
(1 ~ -.=' +P+xl/ 2 A,

J2nx l

(3.19)

Upon shift of the crack edge to {x: X3 = c;t/J(O, X2)}, the stress field in the vicinity of the
crack edge changes, from a?,(xl,x2,X3) say, to a?,(xJ,x2,X3-et/J), plus a further term of
order <; which is associated with increments AK, AP and AA in the quantities K, P and A.
The traction component a i3 on the plane X3 = 0 can therefore be represented, asymptotically,
as <; -> 0,

(3.20)

where ei is the unit vector whose j-component is equal to (jir It follows, upon expanding
(T~ to first order in <;, that .
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(3.21)

Subsequent calculations require only the terms that are singular as XI -> O. Thus. change~
in Pi and Ai can be neglected, and the only important contribution from o(J;i;OX2 is that
associated with the "K-field" (3.15). However, allowance has to be made both for the
"K-fieid" (J~rK) and the "A-field" (J~y.A) in considering a(J~)I/OXI and a(J~2Iax2' It is verified
directly that the following asymptotic relations hold

(J(O,K) (JIO.K;
K I()

II II

(J(O,K)
~ - ---- (JIO,K) _.__._-_.,----- 0

OXI
21

2x I
21

-J~(2xl )3/2(J(O,K) (JIOX) KII31 JI

a(O,KI
0a

) 12

- a(O,KI 2vK;
OX 2

22
,/:i~XI(JIO,K) K;1l

~2

(JIO.A; a(O.AI xl 2 A1a II II

(J(O..1 )
~ -- (JIO,A) (J(O,A)

ax) 21
2xI

2 I
2x, 21

(J(o ..1) (JIO,A) x:!2A
II-"I 31

Note that (J~OI,A) vanishes for the 2-D loading; in general, it is not zero 2 The result is that

I { 1;1/1* }. 1 7 c;1/1*
(1:::: ---;=== 1- --·0 K+P+x!'-A- ~~G,

. ')~\- 2x( 2x "V ~" .. I . I

where tjJ* = 1/1(0, X2), I is the identity matrix, A and P are known vectors, and

(3.22)

0 0 I Al

0= 0 0 0 G=- (2In) 12 K; (3.23)

I 0 0 All + (2In) 12 K;II

In Appendix C we analyze the second order expansion [formula (C.l)) of the displacement
field near the edge of the unperturbed crack and evaluate components of the vectors A and
G via the coefficients of this expansion.

3.4. Evaluation of the stress intensity factors
The effective traction vector (1(1) with components (JH I can be split into two parts,

The term (1(1) has support in the half-plane XI < 0 and is given by (3.14), and
(1~1 = (1(1)_(1~~I. One can evaluate the convolutions in (3.13) when X'I > O. Stress com­
ponents are continuous ahead of the crack, even for the perturbed problem, and

'It follows directly from expansion (CI) that (l\'~" = x: 'K;: W:'i(O) 1':°(0): = ,,/(2Xl-;~)(l 2v)K;.
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Thus, the identity (3.13) implies3
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(3.24)

This is true for all x'J > 0 and can be evaluated, in particular, in the limit x~ ~ +0. The
notation Ii,j = 1,2, will be used for the integral terms in the left-hand side, so that (3.24)
can be represented as

(3.25)

where

and

1\+1 = r" dXlf" dX2[U](x'j -Xl,X;-X2)<U~)(XI,X2)'
Jo - x

The limiting value as X'l ~ +0 of the integral I\+J only requires the asymptotic rep­
resentation of the stress field ahead of the crack. The term I\~i depends on the morphology
of the crack surface and on tractions applied on the crack faces.

Formally, it follows from (3.14) that the leading order (with respect to r) part in the
outer expansion of the stress U(l) near the crack edge corresponds to a non-symmetric load.
It is taken into account by evaluating the second integral term in (3.25)

(3.26)

It should be mentioned that in the case when the unperturbed state corresponds to the
Mode-I crack, the term 12 vanishes.

A convenient method for evaluating It is to employ Fourier transforms: the con­
volution becomes a product of the transform images and the asymptotic approximation as
.x; ~ 0 follows from the behaviour of the transform as ¢J ~ 00 (¢j, ¢2 denote the transform
variables corresponding to Xj, X2).4

Fourier transformation of the sum of (3.18) and (3.22) gives, for the general out-of­
plane perturbation,

(3.27)

The convention is adopted here that an overline implies the Fourier transform with respect
to whatever arguments the original function contains. Thus, i1~) is a transform with respect

'Equation (B.4) shows that (U] is symmetric; hence, transposition of this term is redundant.
4 Here we use the notations similar to Willis and Movchan (1995). In particular, for a function/Ix) its Fourier

transform is specified by/(ס = f If(x) e i
" dx.
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to xI> X2 and is a function of ~ I, ~2' whereas the terms on the right, such as AK, are
transforms with respect to X2 only and are functions of ~2' The Fourier transform of
the weight function is characterised by the following asymptotic formula (see Willis and
Movchan, 1995; Movchan and Willis, 1995)

~ . I { i_}U - 2i 1;2 1+~~
[] () (~I +Oi)I/2 ~l +Oi

Q
,

where

2-3v i~2v
- 2(2-v)I~21

~- 0
2-v

Q=
i~2v 2+v

0
2-v - 2(2-v) 1~21

1
0 0 - 21~21

It follows from (3.27), (3.28) that as I~d -+ + 00, to order O(l/l~d)

Hence, by inverting (3.29),

(3.28)

(3.29)

where the convolution is considered with respect to XI and X2' Here,

2-3v

2(2-v)
0 0

(0 1

~).'(X')1 I v
Q=-

0
2+v

0
~+- 1 0 (3.31 )

n
2(2 - v)

x; 2-v
~ 0 0

0 0 1/2

and the matrix n has the same form as in (3.18) with w = l/J.I> and y = l/J.2 (the representation
for the matrix n agrees with the analysis given by Gao, 1992). Since x\ -+ +0, the delta­
function in (3.30) makes no contribution. Hence,

Next, we express the "morphology" term 1\-) in the form
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with
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(

AK\;norphologYl (x;) )

- lim Er- l = AK(morphology) (x',)
xCI_--t--O 1 III _

. 0 ,

(3.32)

Here

The explicit form of (U] is given by (B.5). It may be noted, from (3.15), that the averages
<.) of the singular part of the stress components ainU) are zero.

Finally, we analyze the integral 12 from (3.25). As X'I ~ +0 it admits the representation

(3.34)

The convolution has a singularity consistent with an "inner limit" (d ~ 0) of taking an
"outer expansion", and it is to be interpreted in the sense of generalized functions. The
details of the calculations are given in Appendix B. It follows immediately from the form
(B.7) for <U) and the relation (a(l»)33 = 0, that the first two components of the vector
term <U)' * [O'(Il] are identically zero. We adopt the following notation

o
o

AKlskew)
(3.35)

Hence, (3.25), (3.30), (3.32) and (3.34) imply

(3.36)

3.5. Comparison with the two-dimensional case
The results given above for a three-dimensional perturbation of the crack front are

consistent with those presented in Section 2. Namely, ifin the formula [obtained by Fourier
transforming (3.36)]

AK ~ -E{Q(t/!*0K<U))+nK(U)}+ AKjr;O'rphology )

AKjskeWT

we let ~2 = 0 and y= f. at/!/aX2 = 0, inversion of the terms Qand (1..1) reduce to zero and
the remaining Fourier transform with respect to ~I yields
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(I1Kll) {( 0
11K, = -e 3w/2

(3.37)

This agrees with the formulae (2.32), (2.46), with

AIO J (1
AK(morphology) = -- ----'- r.1'(X)(1 (U(O). X O)} dx
u II ;-::-8 \'1' I II 'I, '1,

n --X) Y -XI XI

and

'A )
G = -( oj .

All'

3.6. Example: sinusoidal perturbation of the crack surface
Here we consider the simple example of a sinusoidal perturbation of the crack surface.

This example was treated by several authors (see Gao, J992; Xu et al., 1994; Ball and
Larralde, 1995), and, apparently, the results of calculations presented in these papers show
some disagreement.

Namely, we assume that5

(3.38)

and, consequently

(3.39)

Also, it is assumed that the stress-intensity factors, corresponding to the unperturbed state,
are xz-independent. In this case

2-3v____._-- K(O)
2(2-v) 1

o
I (0)

2
KIl

2-3~_K(O)
2(2-v) I

= -slkcos(kxz) 0

~ (0)

2
Ku

and the formula (3.36) is reduced to

'In formula (3.38) the sign of k is not important, but further in the text we assume that k is positive.
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2-3v (0)

2(2-v) K]

o
1 (0)

2: KII

(
0 )2(l-V)2 .+ kstl sm(kX2) KlOj

2-v
o

tJ.Kj;"°rphology)

tJ.Kg';°rphology)

tJ.K~skew)

(3.40)

When the perturbation function l/J is independent of Xl (as in the present example) the
representation (3.35) for tJ.Kl'kew) takes the form (see Appendix B)

1-2v {C l-vf'" c(,I'(x')K10))!cx' }AK(skew) ( ) = . _:...(.1.( )K(OJ) +~~ 'I' . 2 II, ~ 2 d .'
L.l] X 2 E r;::, ;) 'I' X 2 III ,X2 .

-V 2(I-v) OX 2 n -'l X2- X 2

(3.41 )

In particular, for constant Klj)), Km) it reduces to

(3.42)

In addition, let us represent the components <11;;(u(O))), i,j = 1,2, in the form

where Tij' i,j = 1,2, are constant T-stresses applied at infinity.
Then the quantities K\mOrPhOlogy

), j = II, Ill, are evaluated as

The T-stress terms are specified by

sf rzk
AKIT.stress)( . ) -V {2T . (k) T (k)}L.l II X2 = e·2 _

v
21 sm X2 +v 22COS X 2 , (3.44)

(3.45)

When the unperturbed state corresponds to the 2-D loading (independent of X2), the
asymptotic formulae (3.15) are valid everywhere on the crack faces, and the quantities tjl)
vanish. We remark that Xu et al. (1994) have additional morphology terms (with a factor
)2) in the formulae associated with K II and Kill; our calculations show that with the
correct choice of the weight functions these terms cancel; also, we note the sign discrepancy
in the second term in (3.44).6

6 Xu et al. (1994) apparently employed in their calculations the skew symmetry - hi,' = h;" (their notations),
though their formula (20) gives hi' = h~" ; in Appendix B we show that the weight matrix-function [UJ should be
symmetric.
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We emphasize the presence of the term (n/2)1!2tjJG in (3.36) which is related to the high
order expansion for the stress components. This term was not indicated in the papers of
Gao (1992), Xu et al. (1994), Ball and Larralde (1995).

In comparison with the present work the papers by Xu et al. (1994) and by Gao (1992)
use the "travelling reference plane" and the local system of coordinates which moves
along the crack front. Gao (1992) uses a shift of the reference plane without changing its
orientation. In addition, Xu et al. (1994) rotate the reference crack in accordance with
the orientation of the local system of coordinates on the crack front. Consequently, the
coefficients Kj (in terms of notations of these papers) are not c-independent.

4. CONCLUSION

Our intention was to present in an explicit way the asymptotic analysis of the stress
intensity factors for a crack whose surface is characterized by a small out-of-plane deflection.
Clearly, the out-of-plane shift of the crack front produces a singular perturbation of the
boundary value problem, and highly singular terms occur in the formal analysis. We would
like to emphasize the importance of the two term asymptotic approximation for the stress
field and the weight functions near the crack front.

Even for the 2-D case we have derived formulae which generalize results existing in
the literature: first, our formulae cover the case when the T-stress is not constant, and,
second, the analysis does not impose any requirement to relocate a local system of coor­
dinates to the crack tip.

The 3-D case is substantially more difficult but we have shown how it can be treated
with relative ease using the method introduced by Willis and Movchan (1995). This method
uses the concept of generalized functions applied to the Betti identity written in terms of
Fourier transforms. As a matter of exercise the reader can try an alternative approach
(based on ideas similar to those displayed in Section 2), and one can observe that the two
term asymptotic approximations of the stress field and of the weight function are required
in a neighbourhood of the edge of the 3-D crack. Then, one can also discover that the
analysis of the 3-D edge singularity requires much more work than one related to a conical
singularity (the case of two dimensions) discussed in Section 2. Thus, the reader can
appreciate the effectiveness of the approach presented in Section 3 (we can derive the
asymptotic formulae for the stress-intensity factors just on one page). In addition, we would
like to mention that the asymptotic algorithm of Section 3 can be extended to the case of
dynamic cracks in three dimensions; this is the subject of a separate paper (Willis and
Movchan, 1997).
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APPENDIX A: APPLICAnON OF THE BETTI FORMULA IN EVALUATION OF THE
STRESS-INTENSITY FACTORS FOR A 2-D SEMI-INFINITE CRACK

Here we clarify the derivation of formulae (2.31) and (2.44) presented in Section 2.
First, consider the case when the unperturbed problem concerns the Mode-I crack. Applying the Betti formula

to the vector function V(ll and the weight function 'III) in the region BR\So [see Section 2, formula (2.24)] we obtain

]

I heR) = O.
k,~ 1

where

I (R) = f. I YIIII" (v(l)· x) + r(lll" (Vi". x) _V ll )" (rill). x) -1,1i1" (y(II). x)} dlI l~r rr , ':llJ rO , r,,", -'fI rO,:>, x'
~ '":lIxll = R]

I (R) = -f. {"III)a (vll)·x)+rlll)a (vlIJ'x)_v(l)a (,OII'x)_vll)a (YIIIJ'x)}dl2l:.r rr ! ,,0 rll , r rr'" (l,O l, 1 10

: t:!ixl "'"" I iR}

and

I,(R) = I:+ r ,\I1)a !2Cvl I I ;XI. ±O)dl,.
± JS{lnB1!

As R --> ro,

II (R) --> 0,

I l
I,(R) --> - 2I/JQI(O)+ 2wKI(0)-K;J(0).

As a result, we have the formula (2.31).
In a similar way one can apply the Betti formula to the vector functions "I) and Viii and show that

K;(O) = O.

(A.I)

Now. let us clarify the derivation of the formula (2.44). The formal procedure is similar to what was presented
above and, as R ---> en, the Betti formula applied to v(l) [see (2.39)] and ,(1

) yields (A.I), where

II (R) --> - (I/JQII(O) +wKII(O»),

I,(R) -->~I/JQII(O)-~wKII(O)-K;(O),

and

(A.2)

Let us mention that in the formulation presented in Section 2 the supports of the functions!(x I) and adu'O); XJ, + 0)
do not intersect and, therefore, the quantity .9"(X) vanishes, and as a result we obtain formula (2.44). However,
one can extend the applied shear load up to the crack tip including the perturbation region. In this case the term
(A.2) will contribute to the final answer; but in addition we would need to deal with the expansion of the load
function with respect to E. Our intention is to make the main text as simple as possible. Therefore, we concentrate
on the case where the applied load is independent of 8, and. consequently,

mes {sUPP(f(Xl») nsupp(al2(u'O) ;X l , +O»)} = O.

Finally, one can apply the Betti formula to V(ll. given by (2.39), and to 'II) in the region BR\So. As R --> ro, we
deduce (A. I) with
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1,---+0, j=L3; 1,---+-K;,(0).

Consequently, the relation (2.45) holds.

APPENDIX B: SYMMETRIC PART OF THE WEIGHT FUNCTION

The Fourier transform (l/)
Apply the identity

3447

(B.l)

to the field u generated by a layer of body force I(x" x,) distributed on the plane Xl = O. In this case the
displacement u and the stress u are given by

u = :4 * f and u = S * I,

where '§ is the infinite-body Green's matrix, and 8 is the corresponding matrix whose columns represent the
traction vectors. In the limit, when d ---+ 0, one has

[u] = 0, [u] = ~I and [I:] = 0,

and relation (B.I) reduces to

Therefore,

(U)' = ~ [U]' * (8)

or

(U) = ~ (8)' * [U].

In terms of Fourier transforms one has

(B.2)

(B.2)

(B.3)

It follows from the static limit of the results by Willis and Movchan (1995) and Movchan and Willis (1995)
that'

_ (2i)'i 2

[U] = -------.
(2-1')«;, +il(,I)'2

V~I
2-Y-'-I'~1

" + L "

1'(,

(, +il(,1

o

1'(,
2(1-1')+ -'-'-1'-1"+1,,

o

(B.4)

In terms of the original variables x" x, the matrix function [U] has the form

2v
1+-cos[2.0"]

2 --v

2v .
2~v SIn [2.9]

o

21'
2 _ l' sin [2.go] 0

21'
1- 2 _ v cos [2.'!1'] 0

o

(B.5)

where.0" = tan-'(x,!x,). Bueckner (1987, pp. 86 and 87) gives formulae which provide the stress intensity factors
generated by loading just on the upper face of a semi-infinite plane crack. The basic identity presented in Section
3.2 provides, for the perturbed crack. the representation

K"" (x~) = .. [U] * (u({Ii) +(U)*[uIO '],

evaluated at (0, x;). When applied to loading T on the upper face only, (u'O') = ~~T and [u(O'] = - T. Comparison
with Bueckner (1987) requires [U](x" x,) to be replaced by 2'''1I3/'[U](-x" -x,) and (U)(x"x,) to be replaced
by _21/'1I31 '(U)( -x" ~x,); in addition, Bueckner's angle ;. is equivalent to our -.OJ>. These correspondences

7 The formula (A.5) in the Appendix of the second paper cited has a misprint, an extra factor 2, and it was
taken into account when we derived (B.4).
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demonstrate agreement between (R5) and Bueckner (1987), except for the sign of the second column of the
matrix.'

It is verified by direct calculation that the Fourier transform of the traction matrix is given by

I 0
- i(1-2v) \(5) = - . 0

4(1-v)(~7HD1" "
-SI

Then, it follows from (B.3) that

o
o (B.6)

The above matrix function can be represented as

o
o

-2(1-v)~,

(B.7)

where (U) + represents the Fourier transform of the" +" function (which vanishes when X, < 0), and (U)_
corresponds to the Fourier transform of the "-" function (which is equal to zero for all X, > 0). Then, the second
term I, in (3.25) can be rewritten as

(B.8)

and, therefore, the" -" function (U)'_ does not contribute to the final answer for the stress-intensity factors.
One could also predict that components of (U) + must be equal to components of the classical symmetric

weight functions derived by Bueckner (1987).9

The matrix <U) +

In order to derive the representation for components of <U) we shall analyze the inverse Fourier transforms
(with respect to ~, and ~,) of the right-hand side of (B.7). This formal analysis involves the following two functions

"
f;(~"~2)= S, ,j=I,2,

(;, -il~21)12(~,+il;,1)

which can be split as

(B.9)

Here,.f~~) are the" +" functions analytic in the upper half-plane (in ;,), andf~ ! are the" -" functions which
are analytic in the lower half-plane:

(RIO)

and

Hence,

(RII)

where

o
(U)+ = C 0

«(, +i!(2IH -2il(21) 'i' 2(l-v)il;,1

o
o

-2(1-1');,

-(2-v}il~21)

(2-1');, ,

o /
(RI2)

'We believe that formula (B.5) is correct.
9 The paper cited contains misprints in the main formulae for the weight function; this appendix includes an

alternative method of derivation of the weight functions and corrected formulae.
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(i')i2 1-21'
C=i 2 2(2-1')(1-1')'. /
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Let «(;) (x;. (',) denote the Fourier transform of (U), with respect to x; only. Direct calculations show
that

Then. we introduce two auxiliary functions

i 0

"H(X")! 0

\2(1- v)i!(,,1

o
o

-2(1-1')(',

-(2-v)il;,I'

(2-1');, )

o !

(B.13)

and

e
p,(x·,. ;,) = ..----.-- = 1', (x',. (',) sgn«(',).

IU"

It is straightforward to show that the inverse Fourier transforms of these functions are given by

and

Formulae (B.14). (B.15) enable one to evaluate (U)-t in the form'"

(B.14)

(B.15)

C 1
(U) + (x',. x;) = -.~

(.- 2i)' , 2y'1!

o

o

2(1- v)
Re--·--­

(x', +i.I;)J2

o

o

2(1-\')
-- 1m ----.-..---.

(x', +ix;)"

(2-1')
-Re-----·

(x', +ix;)J'

(2-1'\1m __, ._c

(x', +ix;)1'

o

1-21'

8~(2-v)(1-v)(x',)' +(X;)')14
2(1

o
o

v) cos GY']

o
o

2(1-1') sinGY]

~(2-v)cos[~Y]

~ (2 - v) sin [~:1']

o
(B.16)

where.OJ' = tan-'(x;/x',).
As discussed after (B.5), comparison of (B.16) with Bueckner (1987) demonstrates agreement exeept (again)

for the sign of the second column and, in addition. our (3.2) entry corresponds to one half of that given by
Bueckner."

Evaluation of1,
The results of the above calculations can be used to analyze the term I, in (3.26). Here we consider the case

when the perturbation function IjJ is independent of x, (in particular, we have such a perturbation in the example
of the sinusoidal crack front presented in the main text). It follows from (3.14) that for negative values oL>;, the
effective traction vector [0'(11] is given by

iljJ(x,)[O'\"i]

c ([0"_"] = c;.-- .I'(x,)[O'(I~]
eX

I
'¥ - - 1.:

\ 0

(I,. x,) \

(x,.x,) 1+
!

"
ljJ(x,)[O'I,'~]_ (x,. x,) \

ljJ(x,)[O'i(~] (x" x,) I·
o /

(B.17)

where [0':7']- denotes the jump across the crack surface for the (i,i) stress component associated with the vector
field 0'0'. We suppose that the relations (3.15) hold everywhere on the crack surface, and then, when x, < 0, one
has

'" For the square root function of:: = re'" we choose the branch 'v/~ = r L2 e'" with the branch cut along the
non-negative half of the real axis.

" Since our method of derivation employs matrix manipulations and all other components agree. we believe
that formula (8.16) is correct.
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with v being Poisson's ratio.
In our particular case the convolution <U>'f * [11" '] admits the representation

(B.18)

where

r= 2Re Sf' d"j'O d'l- ,,_ljJ(,,)K\l"(,,) l,
L «,;-,')+I(X~-,,)J"(--,,)',j

{f ' 1'0
1m .. ,dx,.

ljJ(x,)KII'!(x,) }dx I --- ._---.--------,.--"-
, • I - 1."> 1-"

«x, -X,)+I(X, --x,)) '( -x,) ,

rI" '<I a(ljJ(x, )Ki?'(x,))/Dx, 1
-41' 1m 1 dx, I dXI~,---. , --~-----~f'.' " «x, --xtl +I(X, -Xo)) '( --,,)' -

Note that first two integrals are singular. and are interpreted in terms of generalized functions.
The following relation holds

'0

j
« ' .) '. .))" ( _ ", x,-x, +I(X,-.\, -x,)

2
------ _._------

x', +i(x~ -- x,)
(8.19)

Also. the limit x', --> 0 for a smooth function q(x,), which is bounded at infinity, one can write

f
' q(x,)dx, '. I" q(x,)dx, , ,-;--.----;- .-.. -->,P. V. -----,- + nq(x,) sgn(x,).

•. , X +I(X, -,,) • , X, -x,

Here the Plemelj formulae were used. Thus, as x', --> +0,

(B.20)

(B.21)

Next, the convolutions involving the non-integrable singularity are deduced by noting that their correct
interpretations in terms of generalized functions are obtained by differentiating (B.19) or (B.20) with respect to
x; . Thus, considering only x', > 0,

('1) dx]

J ,(Z~~-=~, )+i(.~~ - x,))"( - xJl"

ell dx, 4
= -31 .--------.--.. --.;-= - ---- (B.22)

-, ,(-x,)' '«x',--xJl+i(x~-x,))" (x',+i(x;-x,))"

Further, for any smooth function q(x,) bounded at infinity

as x, --> +0 (again, we use the Plemelj fonnulae). Finally, it follows from (B.18) that

1-/1'1 {a (1-1') J" ,"(,I'K'OI)iO, }Kl,'e"' = lim «U)', * [11'''j)e, oc -~- ---;=--;-(ljiK\?iJ+ ---P.v. --'-'I'-~dx2'
tl-o-j () ]- \' v/ 2 [1x~ Jr .\2 --Xl

which is consistent with (3.41).

(B.23)

(8.24)
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APPENDIX C: STRESS FIELD NEAR THE CRACK FRONT. HIGH ORDER TERMS

Here present the derivation (based on analysis of the displacement field near the crack front) of explicit
formulae for the vector coefficients A and G in the asymptotic expansion (3.22).

First by introducing local cylindrical coordinates (r, 9, z) such that

x, = rcos9, Xl = rsin9, X, = -z,

we write the displacement vector in the following asymptotic form

• ~ (::) - ,0" IK,(x,jW'''(1l) +K,,(x,)W"'(1l) +K",(x,jW"'(Il)]

u,

+!l'(x) + ,.3/' {a, (x,)V,I)(9) +a,(x,)VI21(9) +a3 (x,)V(l) (9)

+K;(x,yr" )(9) + Ki,(x,)Y('1(9) +K;I1(x,)y(l)(9)} + O(r'). (CI)

where !l' is a linear (with respect to r) vector function which produces constant stress field; the vector fields ylil
compensate discrepancies of high order in the Lame system and traction boundary conditions left by the terms
r'/2K/WIll, i = 1,2,3.

The following notations are adopted

(

W~'l (2)'/' I
W")(9j = W~.,'l =; 8Jl

W"l

31} I}
-cosT +(2K-I) cos 2

39 9
sinT -(2K+ I) sin 2

o

31} I}
3 sin 2 -(2K-I) sin 2:

31} I}
3cosT -(2K+ l)cos 2

o

5IJ I}
cosT + (2K-3)cos2:

51} I} ,
-sinT +(2K+ 3) sin 2:

o

51} I}
5sinT +(2K-3)sin2:

51} I}
5cosT -(2K+3)cos2:

o

o
o

. 3IJ
SlUT

as in the main text, K = 3 -4v, where v is the Poisson ratio.
The standard representation for the Lame operator in the cylindrical coordinate system is given by
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where
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{ (
i) a) ( a a) a' }L(Cyl)U = r- 2 L(O) r---

l
- +r- I L(1) r-,- +LI2J_. 0,

ar ao ar ao az'

(

( -1)().+2j1)+j111'

VO)«(,II) = (A+j1)(II+(A+3j1)II

o

(A+ j1)(11- (A+ 3j1)t/

j1«(' -l) + (). +2j1)II'

o

i 0

V')«(, II) = (A+ j1) ( 0

'(+ I

o
o

and for the operator of traction boundary conditions (for a half-plane crack) one has

,a,lI(o),

(- - a) ( I { ( "~) 'l}(cyl) ~ ~ _ _ _ -I (0) ~ ~ (I)~
8 ar' ao' az U - allo(U»)- r 8 rar' ao +8 az u,

\all(u)!

where

, J1t7 I'(~-l) 0 ,0 0 0\

8'°)«(, II) = ( 2j1+ ;.«( + I)
I

;. \(2j1+J)II 0 8(l) = \~ 0
I

\ 0 0 WI I' 01

The vector functions r"'yll', j = 1, 2, 3 from (CI) solve the boundary value problems

( a,,) (aD)r-'Vo, r·--- ~ 'r"'Y'I!(O)' = r-1L(lJ r- - I r '!'W'I!(II)'·
('r' all I J or' all ' ,,

( a a) Ir '8,(1) r'l'~:;- {r"'r'I!(I1)} ... = 8 1I1 r L 'WlI)(±n).
cr {'O f/~ in:

Direct calculations show that

(C2)

l/Yi l
}\

r(lI=(--'-i,')I=~
2j1y' 2n

\ Y~ll,l

o
o

II I 311 I
cosz- 3(2K+ l)cos'2J

. fi
KSln Z

When the crack is shifted in the xl-direction by a small amount eif!, the vector of tractions, evaluated on the
reference plane ahead of the crack front is characterised by the following asymptotic formula"

o
o
o

(C3)

where I is the identity matrix. and A and G are given by

"In order to obtain (C3) we evaluate components all, a", a" for the field (Cl), let fi = - eif!!x, and expand
to first order in t: (keeping x, fixed).



On perturbations of plane cracks

1(2)1'12.uu,- 5';; Kill (x,)
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A=

G=

(C.4)

(C.5)

One can verify directly that formulae (CAl, (C.5) are consistent with (3.23).


